Woodbury University
7500 Glenoaks Blvd
Burbank, CA 91510

President
Kenneth Nielson, Ed.D

Director of the School of Media, Culture, and Design
Edward Clift, Ph.D.

Response to the Commission Action Report
of May 15, 2008
Woodbury University is currently applying for accreditation for the following programs in the School of Media, Culture and Design: Animation, Graphic Design, Fashion Design and Interior Architecture. The Commission voted to seek further information before completing its work with the application for Membership. We would like to respond to the concerns and issues by the institution and Commission.

Items for Response:

1. With regard to faculty credentials and qualifications, the institution is requested to provide a policy statement indicating its standards for equivalent professional experience. The policy needs to show how the institution ensures that all faculty, including part-time faculty, are appropriately qualified for their teaching assignments. The institution also needs to document how all current full- and part-time faculty without degree or other specific academic credentials fulfill the requirements of this policy (see Visitors’ Report, page 4; Optional Response, page 4; NASAD Handbook 2007-2008, Second Edition, Item II.E.1.a.(2)).

The following policy for hiring faculty in the School of Media, Culture & Design was developed and consented to by the MCD governing council. It has been submitted to the Faculty Personnel Committee and requires the approval of the Faculty Senate. The departments have agreed to follow these standards pending the outcome of their deliberations.

Faculty Hiring Credentials for Assistant Professor
The School of Media, Culture and Design establishes hiring credentials based on the Faculty Handbook's Faculty Education Degree Requirements on page C-13. In addition to this base standard, the school recognizes there are hiring opportunities that do not fall in traditional degree requirements and hereby sets forth additional standards for hiring full time and part time faculty. These additional credentials are in keeping with the requirements set out in the faculty handbook Section C, D, 1 and C, D, 2 on pages C-13 and C-14 and simply add departmental specificity to these criteria. The relevant pages from the Faculty Handbook are included in envelope 1, item 1.

The following categories describe the standards across all the art and design departments in the School of Media, Culture & Design. In all disciplines, it is recognized that a minimum of two years of teaching experience at the university level is preferred. The Director of the Center for Excellence in Teaching and Learning will mentor desirable candidates that do not meet this requirement.

- **Category 1**
 Terminal Degree in the respective fields (see attached table for specific program terminal degree requirements).
- **Category 2**
 Non-Terminal Graduate Degree with three years of professional experience in nationally recognized professional or academic venues (see attached table for specific program terminal degree requirements). Faculty hired without a terminal degree are encouraged to pursue a degree to support later rank advancement.

- **Category 3**
 Bachelors degree with 6 years of professional experience in nationally recognized professional or academic venues (see attached table for program-specific terminal degree requirements). While this category represents an equivalent to a terminal degree, faculty without a terminal degree are encouraged to pursue a degree to support later rank advancement.

In addition, the School of Media Culture & Design recognizes the following hiring credentials for the position of adjunct professor, lecturer, and senior lecturer, or temporary faculty position.

- **Category 4**
 Non-Terminal Graduate Degree with three years of professional experience in nationally recognized professional or academic venues (see attached table for specific program terminal degree requirements).

- **Category 5**
 Bachelors degree with 6 years of professional experience in nationally recognized professional or academic venues. (See attached table for specific program terminal degree requirements).

In addition to the stated categories there are, on occasion, opportunities to appoint a visiting professor or adjunct with exceptional professional credentials that do not fall within these categories. These appointments are made with the approval of the Senior Vice President of Academic Affairs. Visiting professors will be ranked by the Faculty Personnel Committee.

a. See attached Hiring Credential Chart (included in envelope 1, item 2).
2. The institution is requested (a) to provide a specific curricular rubric containing specific requirements and competency expectations for each of its degree programs in order to minimize curricular fragmentation and inconsistent results, and (b) to document how the rubrics are implemented, especially when various faculty members teach the same course or in the same program. The Commission notes that, while curricular fragmentation and inconsistent results may result in part from the institution's reliance upon part-time faculty, the focus of this item is on consistency within each curricular offering and not on the use of part-time faculty (see Visitors' Report, page 2; Optional Response, pages 2-3; NASAD Handbook 2007-2008, Second Edition, items I.E.2.a (1) and VIII.A.3.a).

To answer this request from NASAD, the chairs of the departments of Animation, Fashion Design, Graphic Design and Interior Architecture met to develop a template for a Curriculum Map that would show the introduction, practice, application and mastery of various skills across the four year curriculum. The maps that have been completed for each department includes all required courses from the curriculum across the top and the appropriate NASAD standards as they apply to the discipline down the left hand side, focusing on specific competency requirements.

Each course within the art and design subject areas was analyzed in relation to the NASAD standards, taking into account whether a competency was integral to the class (of high importance) or present but not central to the class (of low importance). The resulting maps give a clear picture of how a student would progress through any of these programs.

In addition we have included the "boiler plate" course requirements from each department. These documents were part of the original application but have been updated. We have included them to demonstrate how they reflect the curricular maps.

Design Foundation

a. See Design Foundation Course syllabi, envelope 2, and other department curricular maps, envelopes 3 through 6. (Design Foundation courses have been included at the head of each department's curricular map and reflect the expectations of each discipline from the foundation courses).

b. Design Foundation faculty teach from the same syllabi for each of the four foundation courses offered: FO 101 Beginning Drawing, FO 102 Design Elements & Color 1, FO 103 Design Elements & Color 2, FO 104 Drawing and Composition. The Design Foundation faculty have varied backgrounds in art or design, but all have terminal degrees and/or extensive experience in their professional fields or as educators. The faculty, who are part-time (a full-time visiting professorship has been awarded to one of the faculty for the year 2008-2009), and the coordinator, who is full-time, meet at least once a term for each course and over the summer break to evaluate content and make revisions that will improve the program overall. Of the six regular faculty who have been instructors at Woodbury for at least five years each, five teach across the foundation
program in both the drawing and design courses. Four teach in the major departments at the same time, providing continuity across disciplines. The major departments also provide faculty to give presentations and participate in critiques of student projects. This practice allows for an expansive point of view that contributes to a broader understanding of foundation as it relates to the major programs. At the end of fall term, Design Foundation projects are displayed for department chairs and faculty to review and discuss together. The overall focus is to continue to introduce beginning students to a broad understanding of the visual arts while providing integral elements that relate specifically to their majors.

Over a period of ten years, the Design Foundation faculty, in cooperation with the major departments, have developed the content of these courses to ensure a consistent presentation of an interrelated view of the visual arts, a sequential achievement of skills and creativity, and the ability of students to communicate ideas visually, verbally, and in written essays. While each instructor brings varied expertise in art and design, an appreciation of all art and design professions is essential in maintaining a balanced program. Our very special faculty share their individual knowledge with each other, continually infusing the program’s offerings with creative expertise and thereby enhancing its potential for success.

Animation

a. See curricular map and “boilerplate” course descriptions, envelope 3.
b. At our current program size of approximately 60 students, Animation does not currently have more than one section of each course, but because teachers change from year to year, we have several methods of monitoring the students’ progress to assure they are all learning the required material at each level.

Each course has a “boilerplate” which has been designed by the full time faculty with the support of that course’s teacher. The teacher may choose to attach her syllabus to the boiler plate or to transfer the information to the syllabus. All learning objectives in the boiler plate must be incorporated into the program. In addition, evaluation and grading standards are set by the boiler plate.

The Animation chair visits classes on a regular basis and attends midterm and final critiques where possible to evaluate the teaching and the progress of the students. Regular faculty meetings are held where curricular issues are discussed. Adjunct faculty meetings are scheduled at least once a semester where part-time faculty can bring issues about the curriculum, the skill level of the students and other concerns. At the end of each year in the program, all students are required to submit a progress portfolio consisting of material from all major courses completed that year. The full time faculty members, with the assistance of those adjuncts who are able to attend, review the student work from that year. This is done without regard to grades, using instead a rubric based on the learning objectives of the department and Woodbury University’s six
Education Goals. This process allows us to assess both the work of individual students and the overall success of the department in preparing each year’s students for the following year. Students who do not pass the progress portfolio review are required to meet with their advisor, create a remedial work plan, and resubmit the portfolio before enrolling in the next year’s core studio sequence. The Curricular Map created for this response will be used as a framework to support the judging of the progress portfolio review in animation. It has already been shared with the faculty of the department and is sure to inform our discussions at this year’s departmental meetings.

Fashion Design
a. See curricular map and “boilerplate” course descriptions, envelope 4.
b. There are several methods by which faculty are able to teach the same course and achieve comparable results in the content and quality of student projects.

Course content is based on a course “boilerplate” that includes the description, goals, objectives, and grading and plagiarism guidelines for each course. This document provides a guide for all faculty to follow regardless of who is teaching the course. Each instructor’s syllabus is attached to the boilerplate, and is approved by the department chair.

Due to the technical nature of fashion design, the curriculum follows a sequence in which skills build gradually, and it is important that the sequence is strictly followed. This sometimes means that transfer students must take summer studios in order to bring their design skills up to the high standards of the department. Additionally, full-time and “participating” adjuncts have been assigned to oversee the first, second and third year studio curriculum, to ensure the sequential building of skills and knowledge. Frequently, the same instructor is assigned to two consecutive studios.

At the end of the second year, each student submits a portfolio in order to progress to the upper division studios. During the portfolio review several faculty members examine each student’s work in order to determine strengths and weaknesses. Most of the studio faculty members participate in this review at one time or another, so it serves as a method of determining if the skills development sequence is appropriate. It also provides a tool for monitoring the outcomes of lower division course work.

Furthermore, faculty retreats are held each semester, giving both full- and part-time members an opportunity to discuss class content and challenges, compare notes, and examine newly available research or tools.

The department chair attends all final reviews, and all faculty are encouraged to attend in order to see the progress of the students. This process gives faculty members the opportunity to understand the skills taught to students they might be teaching in an
ensuing class. It also allows for faculty to understand the curricular structure which builds on the continued use and practice of earlier knowledge and skills.

Graphic Design
a. See curricular map and "boilerplate" course descriptions, envelope 5.
b. The Department of Graphic Design has several methods by which faculty are able to teach the same course and achieve comparable results in the content and quality of student projects.

In creating course syllabi, all faculty utilize Course Profiles and syllabus masters, which determine course content. The Course Profile defines the description, specific content, accreditation standards, prerequisites, co-requisites and post-requisites for each course. The syllabus master includes learning objectives, grading, attendance, and academic honesty policies and procedures, as well as a daily schedule, and rubric for project descriptions. Faculty develops their syllabi in consultation with the Chair and they are ultimately approved by the Chair.

The department predominately has only one section of each course, but in situations where two sections are required, faculty meet with the Chair to align syllabi so that learning activities are the same. Additionally, the Chair performs Classroom Visitation Assessments each semester, and attends all final reviews along with the faculty.

Faculty meets yearly in a colloquium of sorts called Before and After. Work from each class is displayed and faculty discusses the results with those that are teaching the courses, which come both before, and after the course they are teaching. This gives them an insight into the overall program and provides a perspective on expectations for prerequisite and post requisite courses.

At the end of the sophomore year each student submits a portfolio for admittance into the upper division studios. This process helps the department and our faculty, see the weaknesses and strengths. Seeing all of the student work put together for the first two years provides a tool for monitoring the lower division course work. Projects are evaluated and problems discussed which may result in modifications to the Course Profiles, changes in faculty, or project alterations.

Finally, at the end of each year the Annual Exhibition of Student Work is displayed. Projects from all studios at all levels of the major are displayed providing a comprehensive overview of the program for students, faculty, administration, and industry professionals to comment on.

Interior Architecture
a. See curricular map and "boilerplate" course descriptions, envelope 6.
b. There are several methods by which faculty are able to teach the same course and achieve comparable results in the content and quality of student projects.

Course content is based on a course "boilerplate" called the Course Objectives that defines the description, goals, and objectives sequentially for each course. This provides a guide for all faculty to follow regardless of who is teaching the course. An individual
instructor's Course Syllabus is attached to the Course Objectives, which must be
approved by the department chair. New faculty often team teach with a senior instructor
for their first term in order to become familiar with the requirements of the interior
architecture program.

Due to the technical nature of interior architecture, it is important to the success of the
students that the curriculum follow a logical sequence. The sequence is only successful
when the students have successfully acquired the learning skills stated in the learning
outcomes of each course. The department holds meetings at the beginning of the
semester to discuss course content and project due dates so that faculty members in
different courses understand the content of the other courses. These meetings are
especially helpful among the faculty teaching first-term sophomore and second-term
sophomore courses.

At the end of the sophomore year each student submits a portfolio for admittance into
the upper division studios. Over the past ten years this event has helped the department
and our faculty see the weaknesses and strengths of our curriculum. Most of the faculty
members participate in this review. Seeing all of the student work put together for the
first two years provides a tool for monitoring the lower division course work.

Faculty sit in on many of the mid-term and final reviews in order to see the progress of
the students. It is important that the instructor of the upcoming student sit in on the final
presentation of the previous studio. This gives them an understanding of the skills
taught to the students they will be teaching.

The curricular structure is set up to build on previously learned bodies of knowledge.
Within each semester of the curriculum there is also an attempt to have course content
that overlaps the different courses. This allows for two things. It allows the students to
learn the same concept in different contexts and it allows the students to see how the
specific body of knowledge is applicable to different areas of interior architecture. The
curricular structure also allows for the continued use and practice of earlier knowledge
and skills.

3. The institution is asked to provide documentation of adjustments to the Design
Foundations curricula verifying implementation of measures to address the
acknowledged weakness of freehand drawing skills. The Commission notes the

The additional Design Foundation freehand drawing course, FO 104 Drawing and
Composition, has been approved. It joins FO 101 Beginning Drawing in the introductory
drawing sequence and will be a required course in the Design Foundation program beginning with the Fall 2008 term.

FO 101 Beginning Drawing is essentially an observational course that introduces students, many of whom have very little visual arts experience, to the ability to see and represent objects in dimensional spaces using various drawing techniques and media. With the new drawing course, FO 104 Drawing and Composition, we will be able to build on this basic knowledge and engage students in more complex problems to improve their skills, develop individual abilities, and find their own creative "voice" in freehand drawing.

The Sketchbook is an integral part of the FO 104 Drawing and Composition course. It requires 5 drawings a week outside of class based on the student's own research and interests. Periodically during the course, students will present their sketchbook research to the rest of the class.

The drawings of various professional artists and designers are presented in class lectures to provide the students with inspiration and an overview of the importance of drawing at all levels of artistic development.

The combined extension of basic drawing skills and exploration of more complex drawing problems, and an understanding of the importance of drawing in all art/design professions, will give students more confidence and a greater appreciation of freehand drawing that they can apply in their major studies.

To further reinforce drawing as an essential tool in creating art and design, additional drawing requirements have been added to the other Design Foundation courses (FO 102 Design & Color Elements 1 and FO 103 Design & Color Elements 2) in the areas of conceptual thumbnail sketches and design development.

A copy of FO 104 Drawing and Composition Course Outline and the schedule of assignments are included in envelope 2. All FO faculty teach from the same syllabi to ensure consistency in course content.

4. The Commission notes that the institution has addressed its perceived shortages of curricular requirements in Art/Design History, Theory and Criticism through the use of symposia, but questions the use of doing so with senior project seminars. The institution must demonstrate a means of satisfying this curricular standard with appropriate courses for all degrees (see Visitors' Report, page 7; Optional Response, pages 9-11; NASAD Handbook 2007-2008, Second Edition, item VIII.B.2.a).

Graphic Design and Animation address the curricular requirements in Art/Design History through the use of symposia, but Interior Architecture and Fashion Design used units dedicated to senior project seminars. Both departments have addressed this by creating a
separate class of one unit in the senior year that focuses on historical and theoretical research in relationship to the student's capstone project.

The Interior Architecture department modified the existing one-unit senior seminar course, IA 482 to include a stronger focus on historical and theoretical research. The seminar prepares students for entry into their senior project. In the past there was an equal focus on theoretical framework, program development, form-generating strategies, and site/code analysis. The course is now revised to focus on the students' work on theoretical and historical research pertaining to their senior project's theoretical framework. Form-generating strategies are a minimal part of the course, pertaining to methodological inquiries of contemporary and historical design projects. Students develop their project not as a specific spatial allocation exercise but in a way that allows for an historical and genealogical understanding of their specified program. Students replace the site analysis with a site visit case study, examining a program and space that closely aligns with their stated theoretical framework and its specified program. Syllabi for the adjusted courses are included in attached envelope 6, Interior Architecture Curricular Map and Course Boilerplates.

The Fashion Design Department has submitted a curriculum change to address the Art/Design History requirements. The capstone project studio, FD 482, has been a 5 unit studio including research into the history and art of haute couture design. One unit of this studio has been separated out to directly address this subject and is titled FD 4701 Fashion Design Art History Students will do supervised research into an area of haute couture design that will support and inspire the capstone project. This course will be a co-requisite to the capstone studio, which is now 4 units. The curriculum change has been approved by the Curriculum Committee and will be implemented in the spring term 2009. Syllabi for the two classes are included in attached envelope 4, Fashion Design Curricular Map and Course Boilerplates.

5. The institution should provide information concerning its efforts to provide adequate egress in Kirby Hall for access and safety (see Visitors' Report, page 4; Optional Response, page 5; NASAD Handbook 2007-2008, Second Edition, item II.F.1.f).

Discussions with the primary users of Kirby Hall were started. Randy Stauffer, chair of Interior Architecture, created drawings to add windows, and additional doors preparing to get a bid. Doors were added even though the building meets all Los Angeles Building and Safety requirements in order to allow for a more flexible layout of furniture. However this process was stopped when it became clear, after the removal of the freestanding restrooms along with other North Campus temporary buildings, that the studio spaces in Kirby were no longer safe for students to use at night due to the distance of the nearest usable restroom. There are still plans to add windows and doors to the building whether studios are housed there or not. See envelope 1, item 3. This will allow for a more versatile use of the building as the university continues to plan to meet the needs of the institution.
The Interior Architecture dedicated studios were relocated to the Design Center in a space previously used as a fitness center. Kirby has been modified to hold the fitness center, along with the two lecture classrooms and meeting spaces for student groups.

Future space planning uses for Kirby Hall will be addressed by the President’s Space Planning Committee.

6. The institution should provide a status report concerning the hire of an additional full-time faculty position for its Interior Architecture Program. The Commission notes that the institution plans to fill such a position for the academic year 2009-2010 (see Visitors’ Report, page 2; Optional Response, page 3; NASAD Handbook 2007-2008, Second Edition, item II.E.1.a).

Interior Architecture has commenced its search for a new full-time faculty member. The job requirements are listed on IDEC, ACSA, IIDA, ASID, and the Chronicle of Higher Education as well as the Woodbury website. Application deadline is December 1. Applications have been received and the search committee will begin interviewing in the spring semester. It is anticipated that the new faculty member will be in place as planned for the academic year 2009-2010. A copy of the posting is included in envelope 1, item 4.

Fashion Design is also involved in a search for a full-time faculty member to replace Louise Coffey-Webb who has been appointed chair. The position will be filled for the 2009-2010 academic year. An interim visiting faculty position has been created and Dr. Ann Deegan is holding that appointment. Her CV is included in envelope 1, item 5.

Design Foundation has also appointed a visiting faculty member in addition to Coordinator Carolee Toon to support the expanded teaching load in that department. No date has been set to make this position permanent but the administration has indicated support for this in the future. Keith Walsh, an adjunct and active member of the Design Foundation faculty has filled that position. His CV and exhibition schedule are included in envelope 1, item 6.

7. The institution should provide a status report regarding its plan to increase suitable exhibition space. The institution should also provide information regarding its efforts to attain tangible financial commitments for incorporating exhibitions into its programs. The commission notes that the institution is actively addressing both of these issues in multiple ways (see Visitors’ Report, page 4-5; Optional Response, page 13; NASAD Handbook 2007-2008, Second Edition, item VIII.A.5.a).

Woodbury University has established two dedicated gallery spaces, one on campus, the Cabrini Gallery, and an additional venue in Hollywood, the Woodbury Hollywood Exhibitions. These two galleries are financed by an established yearly budget:
WOODBURY UNIVERSITY GALLERY BUDGET

Gallery Director ($8,000.00 per term) $16,000.00
Receptionist(s) (20 hours per week @10.00 per hour) $ 6,000.00
Artist Honorariums (3 exhibits per term @ $200.00) $ 1,200.00
Maintenance/installation/receptions $ 3,000.00
Announcements/publicity $ 3,000.00
Preparator (est. 16 hours per show x 8 @20.00 per hr.) $ 2,604.00
Administrative Assistant (est. 10-20 hrs per week) $ 1,000.00

Subtotal: $32,804.00
Initial Renovations (new lighting, floors, paint, desk) $15,000.00

Full cost: $47,804.00

These figures are based on:
Gallery hours: Wed.-Sat., 12:00-5:00 pm, for 15 weeks per term. Hours vary between Hollywood Exhibitions and Cabrini depending on the exhibit.

Cabrini Gallery:
Two professional exhibits per term curated by the director or a guest curator.
One school-based exhibit per term (student and/or faculty shows) with the assistance of the department chairs.

Woodbury Hollywood Exhibitions: 6520 Hollywood Blvd.:
Both galleries will exhibit professional art and design projects with the Hollywood Exhibitions exploring experimental projects and installations on the contemporary edge of art and design. Woodbury is coordinating and/or collaborating with the Los Angeles Forum for Architecture (LAF) on various projects during the year. We are also anticipating relationships with other established art/design venues in the Hollywood area, such as Los Angeles Contemporary Exhibitions (LACE) and Hollywood Freewaves.

Suzanne Adelman is the interim gallery director during the search for a permanent position. She is also a new adjunct faculty member in Design Foundation, this term teaching an FO 101 Beginning Drawing course. Suzanne has experience as an educator, a professional exhibiting artist with an MFA from the California Institute for the Arts, and as an independent curator of exhibitions. She recently curated a group exhibition, "Gravity and Transformation", at the Kristi Engle Gallery in Los Angeles. Her first exhibit in the Cabrini Gallery on campus is a solo exhibition of innovative sculptures by Rebecca Ripple (see attached publicity release). Her next exhibit, "Synthetic & Pileup", at the Woodbury Hollywood Exhibitions, opens in October with a group exhibition of 15 comparatively dissimilar Los Angeles artists. Her CV is included in envelope 1, item 7.
Fall, 2008 Schedule

Woodbury Hollywood Exhibitions Fall 2008:
Aug. 29th – ongoing: LAF “The Liner Competition Exhibit, “Pendulum Plane”
“Pendulum Plane” Oyler Wu Collaborative pendulum ceiling installation. The Pendulum Plane operates both as a ceiling and a display device. It is a movable apparatus which can open or close.
Oyler Wu Collaborative
“It is our belief that a “liner” created for the LA Forum/Woodbury space, should through its architectural value, resist the idea of being “stored away” on site. Our proposal subverts that idea by creating a system that capitalizes on the idea of variability. The proposal performs both spatially and functionally in two ways. It consists of an intricate ceiling system that performs both as ceiling as well as a vertical plane that can shape the space in multiple dimensions. It also functions as a variable display system along the wall or in the middle of the space. When in the closed position, each individual unit is self-balanced on a hinge and hovers above the space. At both ends of the unit is a smaller hinged frame that may be rotated. When either of the frames is opened, the balance of the unit shifts, allowing the smaller hinged frame to be lowered into position that is optimal for hanging.”

Oct. 9- 13
Freewaves exhibition: HollyWould Festival
“HollyWould,” the theme for this year year’s festival, is a playful and evocative turn on Hollywood, both as an international symbol of the American entertainment industry and as Los Angeles neighborhood very much in flux. The festival will transform the iconic Hollywood boulevard into a massive, multi-faceted screening room for experimental videos, films, and media art from every continent.

Oct 18- Nov. 22
“Analytic & Synthetic Pile-Up” Group Exhibition curated by Suzanne Adelman (Paintings, Photography and Sculpture)
Participating Artists:
Mason Cooley, Lisa Lapinski, Christie Frields, Shirley Tse, Will Fowler, Keith Walsh, James Hayward, Daniel Mendel-Black, Suzanne Adelman, John Rosewall, Michael Dee, Roger Dickes, Ed Johnson, Darcy Huebler, and Luciano Perna
This is a group exhibition featuring the artworks of 15 Los Angeles-based artists, consisting of sculpture, paintings and photography. These artworks utilize a 'pile-up,' that is, a multi-
layering of concepts or materials. The interaction of the elements is seamless in some works, and chunky in others.

The 'Analytic' and 'Synthetic' sensibilities in this exhibition are a play on the distinctions that follow the production of contemporary art object. These are critical determinations that can rightfully or arbitrarily position the given work as falling into a certain category of inquiry. Thus, does the 'analytic' imply a purity of concept, a selected range of inquiry, or does it mean a focused questioning of an inquiry through the introduction of experimental data? Correspondingly, does the 'synthetic' connote the artificial, the elimination of idiosyncratic data, or does it suggest an evolutionary development, or the unity of two previously separate worlds?

Dec. 6-Jan 30 LAF "Lineweights" an exhibition by architects Predock & Frane. "Predock Frane's upcoming exhibition titled 'Lineweights' brings together three vitrine-like works - two of which were originally commissioned for the Venice Biennale and the Cooper Hewitt DesignTriennial. While each of the three projects relates to a different architectural project in their studio, they all exemplify a process of "generative repetition". This methodology focuses on mapping specific existing morphologies, "actions", systems, and material conditions, then generating and forecasting new architectural results. The models are constructed of layers of acrylic and wood which are subject to the latest modes of technical construction (laser, vacuum, etc.). Simultaneously, thousands of vertical lines of monofilament are hand stitched into place."

Dec. 15-Jan 15 LAF Events

March 28-May 9 "Sustainability" group exhibition curated by Suzanne Adelman.

Cabrini Gallery
The Cabrini Gallery inaugural exhibition opened with:
May 7 – June 5, 2008:

Graphic Design Annual Exhibition of Student Work

Exhibits continue in fall term, 2008 with:

Sep. 16- Oct. 11: **“Rebecca Ripple – Sculptures”**

The Cabrini Gallery at Woodbury University in Burbank is proud to present the sculptural works of Rebecca Ripple. Ms. Ripple incorporates the use of text, which most often relates to a part of the body, with a surprising use of materials. Her sculptural work “Eyebrow” employs a bulbous intestinal form of string with negative space that spells eyebrow and hangs on the wall at gut level. Other works, including “Yellow” surprise expectations: Here, white magic tape builds up to form the word yellow, while hovering over it is an arched shoulder-like piece that has charcoal black below and a white tape grid above.

Oct. 21-Nov. 30 **“Screening of Experimental Animation Projects”**, curated by Angela Diamos; Experimental animation projects of artists ranging from a historical perspective of the 20th century to contemporary explorations by emerging artists presents alternative methods of creating animation.

An opening screening in Fletcher Jones auditorium on October 27 will be followed by a reception in Cabrini Gallery where monitors are set up for viewing individual artist’s work.

Dec. 1-15 **“Open Studio Presentation of Animation and Graphic Design Student Work”**

Spring, 2009

Jan.-Feb **“Michael Arata Exhibition”**, curated by Suzanne Adelman. Michael Arata uses a wide range of media (painting, photography, sculpture, t-shirt slogans) which address issues of negative space, as well as the intersection of art and life. All his artwork utilizes a great sense of humor in addressing these issues.

Mar.-Apr. TBA

May-June **“Annual Exhibition of Graphic Design Student Projects”**
Woodbury continues to provide rotating exhibits at the various satellite spaces on campus under the direction and support of the Exhibitions Committee and the Department chairs.

Fall, 2008 Schedule:

Design Center:
- Aug. 22-Oct. 3 Foundation Drawing
- Oct. 6-Nov. 7 Graphic Design, Logos & Concepts
- Nov. 9-Dec.16 Animation Storyboards & Concepts
- Jan.20-Feb.25 Interior Architecture Studio Projects

Woody’s Cases
- Sept. 3-25 Young-Ji Kim, Woosong University, Korea,
- Sept. 29-Nov.7 Foundation Faculty Show
- Nov.11-Dec.14 “Viva Verde: How Green is My Fashion?”
 Fashion Design Faculty Show

Tamkin Center for Fashion Design:
- Oct.-Jan 2009 “Under Exposed”, Lingerie from the Woodbury University Fashion Study Collection

Cabrini 2nd Floor Display
- Oct.-Jan 2009 Fashion Design Student Projects – Rotating Displays

Lectures and Events:

“asifa Student Animation Festival”
Presented by the ASIFA-Hollywood Educators Forum
Saturday, October 18, 10 am – 7 pm

Wayne Hunt, Principal, Hunt Design
November 6th, 2008. 6:00
Design Center, Powell Gallery
Wayne Hunt founded Hunt Design in 1977 and is a nationally recognized leader in Environmental Graphics and Wayfinding Signage design. He is a Fellow and past President of the Society for Environmental Graphics and the author of three books featuring signage and related graphics design. Mr. Hunt is on the faculty at Art Center College of Design and an Advisory Board member of the Architectural Foundation of Los Angeles.

Doyald Young
November 7th, 2007, 6:00
Design Center, Powell Gallery

Doyald is a graphic designer, typographer, teacher, lecturer and author of Logotypes & Letterforms, Fonts & Logos (a Western Art Directors Club silver medalist), Dangerous Curves, The Ligature on Ligatures, and The Art of the Letter, an extravagantly printed and engraved book about his work. He has lectured internationally: Stockholm, The Hague, London, Glasgow, Tokyo, Hong Kong, Seoul, Daejon, Mexico City, Merida, Guanajuato, Toronto, Montreal and Vancouver B.C.

Postcards and news releases for a few of the above mentioned events are included in envelope 1, item 8.

8. The institution should provide a status report regarding its efforts to provide adequate office space for its part-time faculty (see Visitors’ Report, page 5; Optional Response, page 7; NASAD Handbook 2007-2008, Second Edition, item II.F.2.d).

The university is currently involved in a building project which will move the faculty center to a more permanent location in Wilshire Hall. Faculty from all departments with the exception of Business will be located there. This has affected office and storage space across the campus. At the present time, there are two shared office spaces in the Business Complex for participating adjuncts in the School of Media, Culture & Design. These offices serve five faculty members, two in one office and three in the other. In addition there is a “hot desk” in the administrative area of the Business Complex for any adjunct to use. In the Faculty Center, there is an open office with two desks which can be scheduled by adjunct faculty.

When Phase 2 building is completed, there will be four office spaces with two desks in each office for participating adjuncts in Wilshire Hall. In addition there will be a large office holding three desks that will be available for all adjuncts to schedule. However, with the increase in full time faculty hires, it is likely that the offices in Business that currently house part-time faculty will be assigned to full-time faculty next year.

The university is aware that the needs of part-time faculty for storage and appropriate spaces for meeting with students has not been addressed sufficiently. The Dean of Faculty has agreed to place the subject on the Faculty Senate agenda to create a policy outlining the problem and making recommendations to the university to address this problem in a more organized way.

9. The institution should provide a status report regarding its efforts to address facilities problems related to noise abatement, heating, usage, and storage in Kirby Hall and the Design Center. The Commission notes that there are multiple plans in this regard (see Visitors’ Report, page 4-5; Optional Response, page 6-7; NASAD Handbook 2007-2008, Second Edition, items II.F.2.d.,g., and h).
Over the summer, the university contracted three consultants to review and analyze different aspects of the Design Center and Kirby Hall Facilities. The three firms and their area of expertise were as follows:

- Erin Powell, Newson Brown Acoustics, LLC
- Pacific Coast Process Solutions
- Lighting Design
 Acoustical Engineers
 Mechanical Engineers

The actual reports from each of the consultants are included in envelope 7.

Summary of Evaluations
As with all of evaluations, the final result and recommendations of the different reports highlight possible solutions that need further consideration based on University Budget constraints, intentions of the original design, usability of the spaces, and desired outcomes of the different user groups.

The reports have been submitted to the Chief Financial Officer, Ken Jones, the Sr. Vice President of Academic Affairs, David Rosen, the Director of the School of Media, Culture and Design, Edward Cliff, and the Director of the School of Architecture, Norman Millar. The coordination of consultants and compilation of reports was done by Randy Stauffer, Chair of the Interior Architecture Department. At this point we have not discussed the results of the proposals in a public forum to determine the possible solutions.

Lighting Consultant
The lighting consultant pointed out some areas of concern for lighting. The Design Center's main areas of concern mostly included the public spaces. The solution proposes the addition of new fixtures and the removal of existing fixtures. The actual fixture recommendations need further consideration so that they accommodate not only the lack of sufficient light but also the aesthetic considerations of the space.

The lighting in Kirby Hall proved more problematic due to the temporary intentions of the original design. In order to increase the light quality of the lighting in Kirby hall, additional interior architectural work needs consideration. Additional ceiling and partitions are needed to more fully enclose the dedicated studios and provide surfaces for more reflected light.

Acoustical Engineers
The acoustical engineers pointed out several areas in both the design center and Kirby hall that need addressing. In both buildings, sound transmission from room to room, both horizontally between classrooms and vertically between floors in the Design Center is rated poorly. In the design center they recommend eliminating the sound transmission between floors for two different possibilities. The most intrusive noise is
low level sound of desks moving and people walking. This is easily fixed by adding resilient flooring on the second floor. The elimination of talking becomes more extensive for both buildings. This would entail creating full height wall to the underside of the structure in Kirby and finished ceiling in the Design Center. It would also require removing the louvers in the Design Center. Both the cost and original design intent needs discussion before we settle on a final solution.

The other major acoustical concern in the design center is the sound level of the cooling/exhaust fans. It appears as if the original installation did not follow the specifications outlined in the construction drawings. Correcting the fan speed may help eliminate some of these acoustical problems.

Mechanical Engineer
The solutions recommended for the mechanical systems are both costly and eliminate the original design intent of the building. One of the main factors of the original mechanical design was the use of an environmentally sustainable cooling and heating system. And while the cooling of the Design Center during the hottest days of the year is important the suggested solutions do not take into account the reuse of the originally designed system. It will be important as a group to take the evaluation and discuss solutions that respect cost and original design intent.

Egress and Natural Light in Kirby
We have collected estimate for adding windows and doors to Kirby Hall. The pricing plans the estimates came from are attached at the end of this document.

Next Steps
From these reports we will develop a strategy the implements collectively agreed upon solutions. These solutions will more than likely be part of a phased strategy so that easily accomplished solutions are done soon and more complicated and costly solutions work within the scheduling and budget constraints of the University.

Conclusion to Response
The School of Media, Culture & Design, and the departments of Design Foundation, Animation, Fashion Design, Graphic Design and Interior Architecture appreciate this opportunity to engage in self-study and to use the NASAD standards as a measure of our success.
Section C – Personnel Policy

Introduction

The faculty of Woodbury University have on the one hand the rights and privileges which inhere in their profession and have on the other the obligation to exercise their best judgment in enforcing professional standards, in determining their collective and individual responsibilities and duties in accordance with the mission and goals of the college or university with which they are affiliated, and in observing, and in securing from their colleagues observance of the principles embodied in their code of ethics.

I. Categories of Appointment

A. Faculty Defined:

The faculty of Woodbury University consists of all members of the full-time faculty (those who hold both full-time faculty appointments and faculty rank), the adjunct faculty, the Deans of the Schools under certain conditions (see section I.A.6 and V.B below), and the Senior Vice President of Academic Affairs.

1. The full-time faculty are professional educators whose appointment at Woodbury is their principal employment and whose professional commitment includes responsibilities for the quality of the educational programs and for university service related to, and in support of, the instructional programs, as well as for classroom instruction. For full-time faculty, outside activity that contributes to professional maintenance or advancement and community advancement is generally acceptable, but employment by other educational institutions or other institutions that results in reduced performance at Woodbury will be precluded. Full-time faculty are usually appointed for duty in established departments or schools of instruction. Most full-time faculty are regular faculty who are appointed to renewable terms and are eligible for rank advancement.

2. Visiting faculty are full-time faculty, as defined above and with the same responsibilities and privileges, but appointed for a limited term of years not to exceed three years and are not eligible for rank advancement. If visiting faculty are subsequently appointed to a regular faculty position, their time as visiting faculty is counted towards service as regular full-time faculty.

3. Interim Faculty are full-time faculty, as defined above and with the same responsibilities and privileges, but are emergency appointments to fill a sudden vacancy in a faculty position. They are appointed only until the position is successfully filled through a regular search process and are not eligible for rank advancement. If they are appointed to a regular faculty position, their time as interim faculty is counted towards service as regular full-time faculty.

4. Participating adjunct members of the faculty are educators who contribute beyond their teaching. They have a formal relationship with the institution that may include taking part in helping to shape and to monitor the effectiveness and delivery of the curriculum, participation in governance, and in advising students. Participating adjunct faculty are usually appointed for duties in established departments or schools of instruction.

5. Adjunct members of the faculty are educators who carry less than a full-time member of the faculty's full load for two semesters of any year. They do not receive salary during any term in which they do not teach, but they do participate...
Section C – Personnel Policy

in sick leave on a pro rata basis. Adjunct members of faculty teaching more than a half time load are required to sign a waiver acknowledging the excess load (further research needs to be done on the legal ramifications of the waiver, accreditation implications and faculty review of adjunct who teach a full load. If valid we will need to determine how this is administered.)

6. Deans, though teaching is not their primary responsibility, can hold faculty rank if the following conditions are met:

 a. They were selected through a search committee that includes all chairs of the departments in the dean applicant’s school.
 b. They have been given rank of Full professor based on their application. Rank is recommended by the search committee and the personnel committee.
 c. They participate in the faculty salary structure.
 d. Their contract renewal conforms to the structure as regular full-time faculty.
 e. Deans holding faculty rank have full retreat rights into a faculty position upon the conclusion of their tenure as dean.
Section C – Personnel Policy

B. Faculty Rank and Rank Advancement

Full-time faculty at Woodbury University may hold the rank of:

- Lecturer
- Senior Lecturer
- Assistant Professor
- Associate Professor
- Full Professor

Adjunct faculty hold the rank of Lecturer or Senior Lecturer.

1. The Faculty Personnel Committee, the Faculty Senate, and the Faculty Association regularly review the criteria for each rank. See Section VI for current rank criteria.

2. Newly appointed full-time faculty (regular, visiting and interim) have their credentials evaluated by the Faculty Personnel Committee who decide rank and level within rank.

3. Full-time faculty rank advancement: Current faculty who wish to apply for promotion shall submit an application to the Dean of Faculty at the beginning of the Spring Semester (see contract renewal and rank promotion submittal schedule at the end of this section). The Dean of Faculty will notify the chairs of the applicant’s department, the Dean of the applicant’s school and the Senior Vice President of Academic Affairs upon receipt. The application shall include:

 a. A copy of the latest criteria for the rank for which the faculty member is applying.
 b. An updated copy of the candidate’s curriculum vitae and a detailed summative statement from the faculty member, linked to evidence provided in the application, showing how she or he meets each of the qualifications for that rank. The summative statement should also include an indication of the applicant’s future directions in teaching and professional development.
 c. Substantial evidence to validate the claims to teaching effectiveness, university service and professional development in the applicant’s statement. (See section VI.C for complete description of requirements for rank advancement)
 d. Other materials as requested by the Faculty Personnel Committee and approved by the Faculty Association.
 e. Any other materials the applicant feels will be informative to the Personnel Committee.
 f. Peer Review Requirements (See Section VII)
 g. Signature Checklist For Application for Promotion (See form in Section VII)

The Faculty Personnel Committee evaluates the materials and sends their recommendations to the Senior Vice President of Academic Affairs for review who then forwards the recommendations to the President for approval. A letter is then sent to the applicant stating the results of the promotion process. All recommendations are sent on to the applicant with the decision letter.

 a. Newly appointed adjunct faculty have their credentials evaluated by the appointing department chair who decides rank and level within rank. Adjunct faculty at the rank of lecturer who seek advancement to the rank of senior lecturer should apply directly to the appointing department chair for consideration. An application should include an updated copy of the candidate’s curriculum vitae, a detailed summative statement from the
Section C – Personnel Policy

faculty member, linked to evidence provided in the application, showing how she or he meets the qualifications for senior lecturer, and at least three letters of recommendation from university faculty familiar with the applicants work.
Section C – Personnel Policy

C. **Full time faculty contracts and contract renewals:** Newly hired full-time faculty, whether regular, visiting or interim, shall normally be appointed for an initial one-year term, renewable twice for a total of three one-year terms. Faculty continuing beyond their initial three one-year appointments shall normally be appointed to renewable three-year terms, with exceptions for some full professors (see below). In exceptional cases initial appointments may be for a period longer than one year, subject to approval by the Faculty Personnel Committee. All full-time faculty shall be expected to hold at least a Master's degree or a terminal degree appropriate for the field in which they will be teaching. A few exceptions to the degree requirement may be made to obtain the expertise of some specialists or persons with outstanding backgrounds (see section V.D for conditions on hiring faculty without terminal degree requirements). The types of appointments, that may be granted, are as follows.

1. **One-year appointments:** These appointments will usually be granted to persons for their initial periods of service with the University, whatever their qualifications. One-year appointments may be renewable for no more than five times for regular faculty appointments, two times for visiting faculty appointments, and not at all for interim appointments.

2. **Three-year appointments:** These appointments will usually be granted to those who have satisfactorily served in three one-year appointments as judged by annual reviews of the personnel committee. Visiting professor contracts may be counted as part of the three (3) one-year contract appointments if the faculty have been reviewed by the personnel committee annually during their tenure as visiting faculty.

3. **Five-year appointments:** These appointments will usually be made for full professors whose continued work in teaching, professional development, service, and additional factors represent excellence.

4. **Contract renewal:** Newly appointed and continuing regular or visiting faculty who wish to apply for contract renewal shall submit an application to the Dean of Faculty. The Dean of Faculty will notify the Deans of the appropriate schools and the Senior Vice President of Academic Affairs upon receipt of all applicants. Current faculty applying for renewal of a one-year or their first three-year contract shall submit their package to the Dean of the Faculty at the beginning of the Spring semester. Current Faculty applying for continuing three-year contracts or five-year contracts shall submit their package to the Dean of the Faculty by October 1. The contract renewal package will include

 a. A cover letter requesting contract renewal and specifying the type of contract for which the applicant is eligible to apply.

 b. An updated copy of the candidate’s curriculum vitae

 c. A reflective formative self-evaluation comprised of three sections outlined in the Promotion Policy: Teaching Requirements, University Service Requirements, and Professional and Scholarly Requirements. The self-evaluation must cover accomplishments and achievements in these areas as well as areas for further development and growth. Part of the purpose of the self-evaluation is to ensure that candidates who will become eligible for promotion are making progress toward it; therefore, candidates should refer to the Promotion Policy for explanation of these categories. The narrative for each section must not exceed 500 words.

 d. A Performance Review from the appropriate department chair and a letter of recommendation from the appropriate Dean. If the applicant is a chair, the Dean of the school will select another chair to write a recommendation letter in addition

January 2, 2000;
Revised: March 2006
Section C – Personnel Policy

to the Dean’s letter. If the applicant is a librarian they will receive a performance review from the director of the Library and a faculty member from their subject specialty. The Director of the Library will receive a performance review from the VPAA. This document includes a statement as to the recommendation of that chair and dean.

A detailed description of the Performance Review and the process involved may be found in section IV.C.1.

e Course evaluations for all courses prior to the contract renewal request. Copies of course evaluations are held in the office of Academic Affairs.

f Whatever other materials the applicant feels will be informative to the Personnel Committee.

The Faculty Personnel Committee evaluates the materials and sends their recommendations to the Senior Vice President of Academic Affairs for review who then forwards the recommendations to the President for approval. A letter is then sent to the applicant stating the results of the promotion process. All recommendations are sent on to the applicant with the decision letter.

D. Contract Renewal Package Submittal Schedule

<table>
<thead>
<tr>
<th>Category</th>
<th>Submittal Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 1-year renewal packages</td>
<td>First day of Spring semester</td>
</tr>
<tr>
<td>b First 3-year renewal packages</td>
<td>First day of Spring semester</td>
</tr>
<tr>
<td>c Continuing 3-year renewal packages</td>
<td>October 1 of academic calendar</td>
</tr>
<tr>
<td>d 5-year contract renewal packages</td>
<td>October 1 of academic calendar</td>
</tr>
</tbody>
</table>
Section C – Personnel Policy

II. Conditions of Appointment

A. Definition of Teaching Year
Full-time and participating adjunct faculty as appointed by the teaching year. The teaching year, to which basic salaries apply, shall be two semesters teaching full time. The start of the teaching year will be one week before classes start ending the days grades are due in the spring semester. Adjunct faculty are appointed by the semester or term, beginning with the first day of class and ending on the day grades are due.

B. Faculty Pay Periods
Salaries for full-time and participating adjunct faculty shall be paid in twenty-four (24) semi-monthly installments. Salaries for adjunct faculty are paid every two weeks during the term in which they are teaching. All payments are made beginning with the first full pay-period after the start of classes and contingent upon receipt of all substantiating employment documents have been received (see paragraph F below.)

C. Teaching Load
The normal teaching load for full-time faculty shall be 12 contact-hours units of lecture, or the equivalent, per week. For the purposes of equivalency, 1 unit of studio/lab equals 1.5 units of lecture, assuming that all studio/lab courses are 2 academic hours per academic unit. Faculty may average the load between fall semester and spring semester to meet their teaching obligations. Summer term may be used to satisfy the teaching load requirements with permission from department chair. Participating adjunct and adjunct teaching loads shall not exceed 12 units (or equivalent) in a semester and 21 units (or equivalent) in an academic year, excluding summer term employment. (Note: this again gets dangerously close to full time status, especially if an adjunct teaches 24 units or equivalent over an entire calendar year, and full-time faculty have the discretion of applying summer units to their teaching load requirements.)

D. Office Hour Availability Requirements
1. All full-time and participating adjunct faculty members shall post and keep one office hour for every 4 units of course time per week during which they will be available for consultation with students.
2. Though not required part-time adjunct faculty members may keep office hours on a similar basis proportionate to their teaching loads. Adjunct faculty must be available to students for course questions via email or phone.
3. Advising faculty members shall post and keep additional office hours during advising and registration necessary to accommodate student advising load.
4. Faculty with administrative responsibilities shall post and keep an additional one hour to accommodate student administrative needs.
5. Posted hours shall reasonably reflect the hours most convenient for the students.

E. Committee and Meeting Requirements
1. Full-time faculty will be expected to serve on at least one standing faculty or administrative committee.
2. Adjunct faculty may be requested from time to time to serve on a committee

January 2, 2000;
Revised: March 2006
Section C – Personnel Policy

when their experience and expertise may be of special benefit to the committee or to the University. Expectation of adjunct faculty to serve on University and administrative committees is dependent on availability of adjunct faculty’s schedule and will include administrative compensation for the additional service. Committee conveners will administer compensation based on adjunct salary hourly rate. Faculty may volunteer themselves for election or appointment to any of the standing committees of the Faculty Association or for service on ad hoc committees.

3. Participating adjunct faculty member’s university and committee responsibilities will be stipulated in their letter of appointment.

4. All full-time and participating adjunct faculty are expected to attend departmental, school and University faculty meetings. Adjunct faculty are welcome at all such meetings as well.

F. Official Transcript and Employment Documentation Requirement

Initial and continued employment is contingent upon substantiating official transcripts, satisfactory references, required documentation (W-2 and I-9), and employment history, and no one will be continued who has been, or is, disqualified by any educational institution for cause. The Faculty Personnel Committee should immediately consider all cases involving the above questions or matters of non-accredited degrees. The above statement concerning accredited degrees does not preclude the hiring or retention of specialists or persons of outstanding backgrounds.

G. Faculty Serving in Administrative Capacity Equivalency and Compensation

If a member of the full-time faculty shall also serve in an administrative capacity, adjustments in his or her compensation and teaching load shall be worked out in accordance with a policy prepared and published by the President of the University. Such policy shall be compatible with the principles set forth herein.

H. Letters of Appointment

1. Letters of Appointment for full-time faculty shall be prepared in two copies, one of which should be retained by the faculty members and the other returned to the President of the University with an endorsement showing whether or not a faculty member accepts its terms. Upon receipt, the President will sign the letter of appointment and have a copy placed in the faculty member’s file in the Office of Academic Affairs. A Letter of Appointment shall contain all the terms of employment set forth, either explicitly or, where appropriate, by reference to this statement of personnel policy, or to other University documents available to the faculty.

2. Letters of appointment for adjunct faculty are sent to the faculty before the start of each term. The Letter of Appointment shall contain all the terms of employment set forth, either explicitly or, where appropriate, by reference to this statement of personnel policy, or to other University documents available to the faculty. Appointment of adjunct faculty is subject to enrollment.

I. Stipulations on Outside Activities

For full-time faculty, outside activity that contributes to professional maintenance or advancement and community advancement is generally acceptable, but

January 2, 2000;
Revised: March 2006
Section C – Personnel Policy
employment by other educational institutions or other institutions that results in reduced performance at Woodbury will be precluded. Faculty are required to declare outside activities during their annual update as stipulated in section IV.C.2

J. Faculty Seniority
Faculty seniority is determined by the following criteria
a. Rank
b. Years in rank at Woodbury
c. Years in rank
d. Years at Woodbury
If there is a tie based on rank, then the next criterion would be years at Woodbury and so forth down the list. Seniority is used to determine allocation of office space and other similar issues where objectivity is better than subjectivity, as the latter may lead to decrease in morale.

III. Conditions of Appointment for Faculty with Administrative Responsibilities (TBD – 3/2006)
Section C – Personnel Policy

IV. Faculty Evaluation

A. Woodbury University's Understanding of Faculty Evaluation
The University seeks to provide and maintain an environment conducive to professional and personal development for faculty as well as for students. This environment is the major responsibility of the University community whose members encourage in each other toward excellence and individuality in teaching performance, professional growth, and service to the University. We have a right, therefore, to expect from each other competence, scholarship, and service. An evaluation that is formalized as a serious commitment to the University is a way of institutionalizing and protecting this right. Evaluation is not a matter of sanction but rather an invitation to further development.

B. Evaluation as a Shared Responsibility
The University recognizes the unavoidable sensitivity in any system of accountability. But the University also accepts the need to formalize some kind of assessment of performance and scholarship that documents the information needed in decision-making for retention of the faculty and for continued professional development. Not to maintain a systematic method of collecting personnel data is irresponsible and increases the possibility of arbitrary decisions.

The University is aware of the difficulties inherent in assessing performance in the professions of teaching and scholarship. It is, therefore, appropriate that the assessment of performance be based on the most complete body of information obtainable.

Assessment of faculty is not only within the domain of administrative decision-makers, but also is the responsibility of everyone in the University --self, students, colleagues, and administrators. (A system of student evaluation of faculty is already in place.)

C. The Responsibility of the Faculty Member in Evaluation
The evaluation of professional performance must allow for the individuality of the person being assessed. For this reason, the primary responsibility for assembling and presenting data about performance and professional development rests with the individual faculty member. In addition to assessment of faculty for contract renewal and rank advancement the means of transmitting this information is the annual update, a document of self-evaluation and personal planning. This annual report on professional accomplishment includes:

1. Performance Review
In the Fall Semester of the last year of a three- or five-year contract, or in the Spring Semester of a one-year contract, full-time faculty are required to have a Performance Review with the department chair, or in the case of department chairs a Performance Review by their respective deans. In addition, faculty may request a review at any time (not to exceed one per year). The review must be parallel to all of the criteria for rank promotion. The reviewer is responsible for writing the performance review, which must be signed by both parties. The faculty member under review has the right to append a statement. A copy of the final review document is to be submitted to the Office of Academic Affairs for placement in the permanent file.
Section C – Personnel Policy

2. Annual Update
 Each year, on or before the beginning of the Spring Semester, each full-time faculty member must submit to their department chair or dean in the case of department chairs an Annual Update for the prior calendar year (January through December). This update consists of a listing of all activities delineated as rank criteria in the Faculty Handbook. This should include teaching, professional development, and community service. The person in receipt of the annual update will distribute copies to the Dean of the appropriate school and the Office of Academic Affairs.
Section C – Personnel Policy

V. Policies for Appointments, Reappointments, Promotions, Assignments, Terminations and Dismissals for Cause

A. Personnel Committee Review of Full-time Faculty
The Faculty Personnel Committee shall review and evaluate the performance and qualifications of all persons under consideration for full-time faculty appointment and reappointment and report its recommendations to the President.

B. Full-time faculty Search Policy
Actions on full-time one-year and three-year appointments will be initiated by the appropriate department, school, or the Senior Vice President of Academic Affairs. Positions will be advertised regionally or nationally, as determined by the Senior Vice President of Academic Affairs, the appropriate dean and departmental faculty. Advertisements will clearly indicate the responsibilities of the position, the minimum credentials for holding the position and the nature of Woodbury University's contract system (i.e., non-tenure granting).

Schools shall use search committees to evaluate candidates for full-time positions. Search committees shall be established by department heads for faculty appointments and by deans for department chair appointments. Search committees for deans that will have faculty status will be established by the Senior Vice President of Academic Affairs and will include the department chairs of the school. Criteria for deans with faculty rank must include qualifying for faculty rank according to the conditions below. Chairs of search committees will be determined within the committee.

The Senior Vice President of Academic Affairs will carry the committee’s recommendation to the Faculty Personnel Committee, which then evaluates the candidate for placement at rank and level. The Senior Vice President of Academic Affairs forwards the completed recommendation to the President for final approval.

C. Personnel Committee's review of Full-time Faculty Search Committee decisions
In considering the nomination of a person to be appointed for the first time, the Faculty Personnel Committee shall determine that the search committees have reasonably observed the principles of non-discrimination, that all conditions for faculty appointment have been met, and will establish the rank and years of service of the candidate to be appointed. Search committees should maintain in their records names of all persons who were nominated or who applied for a vacancy, and such records should show for each unsuccessful candidate a brief statement of the reason or reasons why he or she was not selected.

D. Faculty Educational Degree Requirements
Applicants for full-time appointments must have a doctoral degree or an appropriate terminal degree at the time of hire. Candidates in process of completing the required doctoral or terminal degree may be conditionally hired and placed at the rank of lecturer, pending timely completion of degree requirements. In a field in which there may be no standard terminal
Section C – Personnel Policy

degree recognized, deans or chairs of the related department may submit appropriate
documentation to the Faculty Personnel Committee that:

1. demonstrates the absence of a professional standard for terminal degree at
comparable institutions, and;

2. the candidate for appointment shows a substantial body of work that includes all of
the following:
 a. demonstrates the application of professional or theoretical knowledge in that
discipline
 b. demonstrates substantial contribution to a body of knowledge in that discipline
 c. has been peer-reviewed by regionally or nationally recognized organizations

Upon employment, the University, in conjunction with the applicable search and
personnel committees, either agrees that the faculty member has the appropriate
degree to qualify for future rank advancement, or the University must stipulate in
writing what additional degree is required for future rank advancement. If the
University fails to send such a letter, it is assumed that the candidate’s degree is the
appropriate terminal degree.

E. Criteria for Evaluating Faculty for reappointment

In evaluating an individual for reappointment, the Faculty Personnel Committee shall
carefully weigh his or her performance against the following criteria:

Teaching and Advising
1. Excellence in teaching, evaluating and counseling students
2. Objective studies or comparisons such as student ratings and other quantitative
 criteria as may be desired.
3. Conscientious observance of the standards of professional ethics
 Professional and Scholarly Activities
4. Competence in a field of knowledge or professional practice and its importance to
 teaching
5. Achievements in demonstrating intellectual or creative ability and its importance to
 teaching
 University Service
6. Conscientious performance of University duties as outlined in Conditions of
 Appointment

F. Deadlines for notification of non renewal of appointment

The Faculty Personnel Committee shall conduct its reviews and evaluations of individuals
under consideration for reappointment in sufficient time that the committee may give the
President notice of the committee’s action at least one month prior to the deadline for
notification of those who will not be re-appointed.

Full-time faculty shall normally receive notification in writing of the terms and conditions of
renewed appointments no later than the eighth week of the term for those on special
appointments and no later than the first day of the third month prior to the expiration of
their appointments for all others. In addition, full-time faculty on three-year appointments
shall normally receive notice in writing of adjustments in their salaries and benefits, if any,
Section C – Personnel Policy

no later than the first day of the third month prior to August 15, which is the beginning of
the academic year. Cost-of-living adjustments to the Faculty Salary Schedule will normally
be made in January of each academic year. A copy of the current salary schedule is
attached at the end of this document.

Those who will not be re-appointed should receive notification of that fact in writing no
later than the dates specified in the following schedule:

1. For those on special appointments, before the eighth week of the term for which
 their appointments are effective;
2. For those on annual appointments who are in the first year of such
 appointments, at least three months in advance of the expiration of their
 appointments;
3. For those on annual appointments who have served longer than one year, at
 least six months in advance of the expiration of their appointments.

G. Faculty appeal of personnel decisions
The Faculty Personnel Appeals Committee may review actions regarding rank promotion,
contract renewal, and sabbatical leave when requested to do so by an applicant for any of
those three decisions.

1. While this committee has access to all of the information provided to the Faculty
 Personnel Committee, it is not the purpose of this committee to merely repeat the
 process undertaken by the Personnel Committee and arrive at its own conclusion.

2. This committee will hear a representative of the Faculty Personnel Committee
 (selected by the Faculty Personnel Committee) and the appellant (and their
 chosen representative from the Woodbury community, if they so desire).

3 Appeals procedural timeline
 a. The appellant makes a written request for an appeal to the Appeals Committee
 within 10 business days from the date of written notification.

 b. Within 5 business days from receipt of the appellant's request, the Appeals
 Committee informs the appellant of a hearing date to be scheduled within 10
 business days.

 c. The Appeals Committee will determine the length and number of meetings
 necessary to hear the case. There will be a written recommendation issued to
 the President of the University and to the appellant by the Appeals Committee
 within 10 business days of the initial hearing.

H. Termination of Faculty

1. Non-renewal of contract according to the policies and standards set forth above.

2. Termination without prejudice: The University may also not renew a faculty
 member's contract without prejudice to their reputations because of decisions to
curtail or abandon a program or programs because of financial exigency provided
that:

 a. The Faculty Association and its appropriate committee or committees have
Section C – Personnel Policy

been consulted with due process about the questions of educational policy
involved in the curtailment or abandonment of a program or programs or;

b. The Board of Trustees shall formally declare that a bona fide condition of
financial exigency exists and shall present evidence of such financial exigency
to the Executive Committee of the Faculty Association.

Before terminating an appointment for such reasons, the University shall make
every effort to place any affected faculty member in other areas in which they
can offer evidence of professional preparation.

If in the extraordinary event that an appointment is terminated for such reasons
before the end of a contract period, the University shall not fill the concerned
faculty member's place within a period of two years unless the released faculty
member has first been offered the position and has had a reasonable time to
accept or reject the offer.

I. Dismissal of Faculty prior to expiration of appointment
The University may dismiss a faculty member for cause before the expiration of his or her
appointment only on the following grounds:

1. Incompetence;
2. Neglect of duty or other good cause;
3. Personal conduct that indicates an unfitness for association with students or for
 the instruction of students: or
4. Flagrant or repeated conduct contrary to University regulations or conduct which is
 intended to prevent or which directly incites others to prevent anyone from
 performing his or her duties or from carrying on his or her lawful business with the
 University.

J. Procedure for dismissal of faculty prior to expiration of appointment
The following procedure shall be followed in any action to dismiss a faculty member for
cause before the expiration of his or her appointment.

1. The President of the University shall give written notice of the proposed action and
 the reasons therefore to the faculty member concerned, either in person or by
 registered mail to his or her last known address. At the same time, the faculty
 member shall be given information in writing about any regulations that he or she
 is charged with violating and informed of his/her right to appeal to the Termination
 for Cause Committee, an ad hoc committee of the Faculty Association.

2. If the faculty member desires a hearing by Termination for Cause Committee, he
 or she shall submit a written request for a hearing to the Dean of the Faculty and
 to the President of the University within fourteen days of notification of the action.

3. The faculty member shall designate one member of the Termination for Cause
 Committee while the Executive Committee of the Faculty Senate shall designate
 the other two members, all of whom are faculty at Woodbury University. These
 members shall meet promptly to elect a chair and to set a time and place for the

January 2, 2000;
Revised: March 2006
Section C – Personnel Policy

hearing. The time of the hearing shall not be less than fourteen days from the date of written request of the faculty member

4. No hearing shall be held unless the faculty member concerned files a request for a hearing and presents his or her answer to the University’s charges within the specified time.

5. If requested as described above, the hearing shall be held at the specified time and place and conducted, subject to the following procedures:

 a. The faculty member concerned shall have the right to be present at all times when evidence is being presented or oral argument is being made, and he or she shall have the right to confront any and all witnesses against him.

 b. The faculty member concerned may be assisted and represented by counsel of his or her choice. The University may be represented by the Senior Vice President of Academic Affairs, or the chairman/dean of the division/school affected, and/or by counsel who shall also have the right to be present whenever evidence is being presented or oral argument being made.

 c. The hearing need not be conducted according to technical rules of evidence. Any pertinent oral or documentary evidence may be received but the committee shall, as a matter of policy, provide for the exclusion of irrelevant and unduly repetitious evidence. The faculty member concerned and the University may submit oral or documentary evidence, rebuttal evidence, and oral and written argument on the evidence and on the merits of the case; both sides may inspect documentary evidence offered by the other; and both sides may conduct such cross-examination of witnesses as may be required to obtain a full disclosure of the facts.

 d. The hearing committee shall use its good offices to assist any interested party to obtain the testimony of witnesses capable of giving pertinent evidence or documents relevant to the matter. Particularly in cases where neglect of duty has been charged, the committee shall hear testimony from faculty membership in the same field of scholarship and teaching, either at Woodbury University or at other institutions.

 e. A full stenographic or electronic recording of the hearing shall be maintained and made available only to the parties directly concerned.

 f. There shall be no disclosure by the hearing committee or by any of its members of the evidence received during the hearing nor of the deliberations of the committee, except as follows:

 i. At the conclusion of the hearing, as promptly as is consistent with proper deliberation, the committee shall formulate its findings based upon substantial evidence and its recommendations.

 ii. The committee shall file with the President of the University a written statement of its findings and recommendations, including stenographic or electronic records.

 iii. The committee shall deliver to the faculty member concerned a
Section C – Personnel Policy

written statement of its findings and recommendations.

g. Thereafter, the President of the University shall review the committee's findings and recommendations and, in light thereof, shall make final disposition of the case.

6. Whenever dismissal actions are in process, the faculty member concerned may be suspended from the performance of his or her University duties pending the hearing if immediate harm to him or herself or to others is threatened by the continued performance of those duties. Such suspension shall be without loss of salary.

7. Whenever, for reasons of vacation or unforeseen complications, variations in these procedures become necessary, such variations shall be adopted only after mutual agreement of all parties concerned and shall be in writing.
Section C – Personnel Policy

VI Faculty Rank

A. Minimum Faculty Rank Requirements
The minimum requirements for each faculty rank are as follows.

1. Education
 a. Lecturer: Masters’ degree from an accredited institution.
 b. Senior Lecturer: Masters’ degree from an accredited institution.
 c. Assistant Professor: A terminal degree from an accredited institution.
 d. Associate Professor: A terminal degree from an accredited institution.
 e. Full Professor: A terminal degree from an accredited institution.
 An equivalent of accomplishment, as defined in item V-C of the Faculty Personnel Policy, may substitute for any degree listed above.

2. Teaching Experience
 a. Lecturer: No teaching experience is required.
 b. Senior lecturer: A minimum of six years successful part-time teaching is required. A minimum of three of these years must be with a Masters’ degree.
 c. Assistant Professor: No teaching experience is required.
 d. Associate Professor: A minimum of six years successful full-time teaching is required. A minimum of three of these years must be with a terminal degree.
 e. Full Professor: A minimum of eleven years successful full-time teaching is required. A minimum of three of these years must be with a terminal degree.

3 Teaching Equivalency
For those who have not been on full-time contracts, part-time teaching experience may be counted according to the equivalents given below. A maximum of one calendar year of teaching experience will be credited for each calendar year taught.

6 semester courses = one year teaching experience
9 quarter courses = one year teaching experience (1.5 quarter units = 1 semester unit)
3 semester-unit studio course = one 3-unit semester course
6 semester-unit studio course = two 3-unit semester courses

For those who have related business or professional experience, three years of relevant experience may, upon recommendation of the search committee and at the discretion of the Faculty Personnel Committee, be credited for one year of teaching experience, to a maximum of three years of teaching-experience equivalent.

B. Rank as determined by ideals of a teaching scholar
Further distinction among ranks is made by evaluating the candidate’s potential or progress toward achieving or fulfilling the ideals of a teaching scholar. Teaching scholars should be recognized scholars in their fields, should serve as role models for junior
Section C – Personnel Policy

faculty, and should fulfill the requirements of all three categories listed below (C through E) to this level of achievement. The distinction among ranks is as follows:

3. The Lecturer shows potential toward achieving the ideals of the teaching scholar.

4. The Senior Lecturer demonstrates accomplishment in achieving many of the ideals of the teaching scholar.

5. The Assistant Professor shows potential toward fulfilling the ideals of the teaching scholar.

6. The Associate Professor demonstrates significant progress toward achieving the ideals of the teaching scholar.

7. The Full Professor demonstrates the highest level of fulfillment of the University’s ideals of the teaching scholar.

C. Teaching Requirements

Teaching Evaluation: The teaching scholar demonstrates the highest level of teaching skills. Documentation in support of the applicant’s teaching skills must include the following:

1. Student evaluations from all classes taught since the applicant’s last promotion

2. Additional documentation may include reviews, recommendations from colleagues, outcome evaluations, independent assessment of student work, or other similar items.

3. Academic commitment: The teaching scholar demonstrates a commitment to the academic process at the university. Documentation in support of the applicant’s academic commitment should include descriptions of instructional activities that are beyond those generally required and have occurred since the applicant’s last promotion. Such activities may include:

 a. Development of new courses or curricula

 b. Development of new methods of teaching

 c. Development of a series of field trips

 d. Development of instructional materials above those generally required

 e. Development of other significant pedagogical activities

4. Teaching Development: A demonstration of enhanced performance in the classroom. Documentation in support of the applicant’s enhanced performance may include descriptions of how the activities listed below have improved the classroom experience or improved the applicant’s skills as a teaching scholar. Only those activities having occurred since the applicant’s last promotion are considered.

 Note the distinction between this category and category E, Professional and Scholarly Requirements. Category E focuses on professional and scholarly activities the applicant has completed, whereas this category is for describing how those activities have enhanced the classroom experience.

Professional activities

January 2, 2000;
Revised: March 2006
Section C – Personnel Policy

a. Educational activities, including organized self-study, independent research, or attendance at conferences or workshops

b. Scholarly activities, including those leading to publication or presentation

c. Creative endeavors, including presentation or publication of works of art or design

D. University Service Requirements

The teaching scholar shows consistent leadership in areas central to the mission and functioning of the university and commitment to higher education as a profession. Documentation in support of these activities may include the following:

1. Serious involvement in Faculty Association and university committees "Serious" involvement implies participation beyond minimum Faculty Association requirements. This could include additional committee assignments beyond the minimum required, chairing committees, or serving as an officer or senator of the Faculty Association.

2. Representing the faculty on university committees

3. Advising a student organization or active participation in other student activities (not just attendance at these activities)

4. Active participation in Woodbury faculty development activities, University initiatives, or community functions (not just attendance at these functions)

5. Participation in community, civic, service, or charitable organizations

E. Professional and Scholarly Requirements

The teaching scholar demonstrates professional growth. These are activities that go beyond those related to the classroom or to teaching skills. Instead, they demonstrate that the applicant is actively working to contribute to his profession and to establish a "presence" in his or her field.

Listed below are three areas of activities that contribute to professional growth and accomplishment. Although fulfilling all three, or even two categories is not required, it is expected that the teaching scholar demonstrate a breadth and depth of activity, showing serious accomplishment and committed involvement. In some cases, a specific activity or accomplishment may have the attributes of more than one category.

To demonstrate that the professional development is an ongoing pursuit, only activities that have occurred or have been completed since the applicant's last promotion may be included.

1. Serious involvement in professional and/or educational associations
 This could include serving as an officer in a professional or educational organization, an editor for the organization's journal, or participating in the organization of a conference. "Serious" implies that you are committed to these services by active and extended participation.

2. Scholarly activities leading to publication or presentation
 This category includes publication of books, articles in journals, and presentations in professional, educational, or public settings that present research or other scholarly activities.

January 2, 2000;
Revised: March 2006
Section C – Personnel Policy
3. Creative endeavors and presentation or publication of works of art or design
 This category includes activities that lead to the production and presentation of works of
 art (including film and design) and performances (performing arts). Documentation should
 include representative samples and professional recognition of the work.
Section C – Personnel Policy

VII. Promotion Peer Review Requirements

To assure that candidates for promotion in rank present the best possible case to the Personnel Committee, formative reviews (discussions that provide constructive feedback) will be conducted so that candidates can improve their applications and be alerted to any shortfalls prior to submitting their promotion materials. Therefore, applicants for promotion must complete the following:

1. Solicit the advice of at least two members of the faculty of the rank they are seeking, preferably faculty within their own department or school with experience on the Personnel Committee. The candidate must present these faculty members with his or her promotion portfolio and give them sufficient time to review the materials and discuss them with the candidate. The candidate must then obtain the signatures of both these faculty members on the form below. The signatures are acknowledgments, not endorsements.

2. Notify their department chair and dean (or dean only in the case of a department chair) of her or his decision to seek promotion. The candidate must then obtain the signatures of the dean and chair on the form below. The signatures are acknowledgments, not endorsements.

3. Secure at least two letters of recommendation from Woodbury faculty and at least one letter from non-Woodbury faculty acquainted with their educational or professional work. Ideally, these faculty should be of the rank that the candidate is pursuing. The letters of recommendation should directly address criteria outlined in the Promotion Policy. Additional letters from administrators and/or professionals knowledgeable of the candidate’s work may also be included. Letters of recommendation may be solicited from one’s department chair and/or dean, but failure to seek such a letter will not be prejudicial to the candidate’s application.

4. See next page for copy of Promotion Peer Review signature sheet
Signature Checklist for application for promotion

Formative review by faculty: We the undersigned have reviewed the candidate's promotion materials and met with her/him to discuss these materials.

1) _____________________________ Date
 Faculty Signature

 Printed Name

2) _____________________________ Date
 Faculty Signature

 Printed Name

Notification of chair and dean: We the undersigned have been notified of the candidate's intention to apply for promotion this academic year.

1) _____________________________ Date
 Chair's Signature

 Printed Name

2) _____________________________ Date
 Dean's Signature

 Printed Name

Names of references, Woodbury faculty

1) _____________________________

2) _____________________________

Name of reference, non-Woodbury faculty

1) _____________________________
 Name

 Institution
Section C – Personnel Policy

VIII. Benefits and Leaves of Absence

A. Reference Statement to University Policy and Procedures:
Woodbury University faculty have the same benefits as all other employees of the institution. These are described in detail in the University Policy and Procedures Manual.

B. Adjunct Sick Leave:
Adjunct faculty shall accrue sick leave on a proportionate basis, (one class per term per course). A substantiating physician’s statement is required in case of illness or disability of more than one week.

C. Sabbatical Leaves:
Sabbatical leaves for full-time faculty may be provided for purposes that serve the interests both of the faculty and the University; namely for the professional growth and intellectual enrichment of the faculty and for the improvement of courses and programs of study of the University.

1. The number of sabbatical leaves each year will be governed by the availability of funds.

2. Appointments of sabbatical replacements will not be made for persons who are on leave for one term, except as the needs of the University require.

3. A full-time faculty member will be eligible to apply for a sabbatical leave after six years of full-time service. Time to be counted for eligibility will begin on the first day of the academic year in which a faculty member has been appointed. Time spent in leaves of absence without pay will not count toward eligibility for sabbatical leave.

4. Each eligible candidate must submit a request for sabbatical leave to the Dean of Faculty no later than the first day of September of the year prior to the academic year in which his or her leave will occur. The Dean of Faculty will forward copies of the request to the appropriate Dean of the school and the Senior Vice President of Academic Affairs. Requests must include a detailed statement of the purpose of the leave, a plan for study or professional activities during the leave, and an estimate of what will be achieved.

The Faculty Personnel Committee evaluates the materials and sends their recommendations to the Senior Vice President of Academic Affairs for review who then forwards the recommendations to the President for approval. A letter is then sent to the applicant stating the results of the. All recommendations are sent on to the applicant with the decision letter by November 1.
Section C – Personnel Policy

5. Sabbatical leaves may be granted for one semester with full pay or two semesters with one-half pay, or a sabbatical may consist of a one-year half-time appointment with full pay.

6. Since sabbatical leave is granted for the benefit of the University as well as for the benefit of the individual, the recipient of a sabbatical leave shall obligate him- or herself to return to the University for a period of at least one full academic year after the leave and to submit a written report to the President summarizing activities and achievements while on leave.

D. Leave of Absence:

A full-time faculty member may apply for a leave of absence without pay. A leave without pay may be granted for up to one year and should be requested by the first day of December, whenever possible, prior to the academic year in which the leave is desired. Such a leave will be granted only under the following conditions:

1. The purpose of the leave will benefit the University as well as the faculty member, or is for exceptional personal needs.

2. The responsibilities of the faculty member can be covered in a manner acceptable to both the academic program and the University.

3. The faculty member at his or her own expense may continue payment for some fringe benefits as allowed by the benefit program.

It is the responsibility of the faculty member to:

a. Document to the University the value of the proposed leave.

b. Discuss with the department chair or dean the feasibility of adequate coverage of his/her responsibilities.

c. File with the Senior Vice President of Academic Affairs a written recommendation from the department chair or dean in support or non-support of the leave.

The condition of the leave and the future relationship of the faculty member to the University shall be set down in writing and signed by the Senior Vice President of Academic Affairs and the faculty member requesting the leave.

The Senior Vice President of Academic Affairs shall discuss the proposed leave with the faculty member and the appropriate department chair or dean, add his/her written recommendation to the file, make the final decision and inform the Faculty Personnel Committee of that decision. The Senior Vice President of Academic Affairs will submit the proposal for final approval to the President as part of the budget planning for the following academic year.
E. Faculty Attendance to at Professional Meetings and Activities

The University through its departmental budgets shall endeavor to provide assistance for full-time faculty to attend appropriate professional meetings and other activities where the desirability of attendance has been determined by the relevant department chair and dean to be in the interests of the University and where the member's absence will not be a serious detriment to the educational process.

For those wishing only to attend such meetings, the University may pay one-half the transportation costs by the most economical feasible means and one-half the per diem cost for two days attendance at the meeting. For those who are participants in or contributors to sessions of a professional meeting, the University may pay the full transportation costs by the most economical feasible means and full per diem for two days, depending upon funding limits established in departmental budgets. The amount of any assistance received from other sources may be deducted from the amount that would otherwise be advanced by the University.
Section C – Personnel Policy

IX. Retirement Policy

There is no designated age at which retirement becomes mandatory. However, appointments made after a faculty member has reached his/her sixty-fifth birthday shall not extend beyond the end of the academic year in which he or she shall attain the age of seventy. Thereafter, appointments will be renewed for one year at a time only and are subject to the recommendations of the chairman of the department or dean of the school, the Faculty Personnel Committee and the approval of the President of the University.

Phased Retirement

Phased retirement is not an employee entitlement; it is voluntary for both the University and the employee, and all the terms or arrangements (including expectations for teaching, advisement, and other normal faculty duties) will be mutually agreed upon and documented. Phased retirement may be available to faculty members who are at least 59 years of age and have been employed at the university full-time for at least ten years. All other employment contracts with the university are void at the time one initiates a phased retirement contract, and participants retire at the end of the agreed upon period.

Phased retirement allows for no more than half of a full-time load for the normal contractual year for a period of one to five years, with the amount of load and length of service to be negotiated as part of the contract. Participants may not increase their teaching load after the initial agreement is made. Persons in phased retirement receive full-time benefits (to the extent permissible by law, regulations of the benefit carrier, and the Internal Revenue Code) and a salary proportionate to their full-time salary and the percent of service load negotiated. Salary increases for which the individual would have qualified as a full-time faculty member will be provided at the proportional rate in effect at the time such increase would ordinarily be granted. During the period of phased retirement the faculty member retains all rights, privileges and responsibilities of a full-time faculty member, except that eligibility for sabbaticals and paid leaves (other than sick leave and vacation, if applicable) is relinquished.

Exceptions and Disclaimers

The University retains the right to allow exceptions to the Phased Retirement program. The program may be reviewed, modified or terminated at any time without affecting already existing arrangements. Participation in the Phased Retirement plan does not confer any additional employment rights upon the participant.

Procedure

1. An individual desiring to initiate phased retirement will submit a written request through her or his Dean or unit head to the Vice President of Academic Affairs no later than October 1 of the intended final full-time contract year.

2. The Dean or unit head will consult with the department head and others as appropriate to evaluate the request in terms of planning, personnel needs, support requirements, and other pertinent factors.
Section C – Personnel Policy

3. The Vice President of Academic Affairs will review the proposed agreement terms with the Director of Human Resources or her/his designee for benefit and program review.

4. The Vice President of Academic Affairs will approve, not approve, or suggest a modification to the recommendation, and present the recommendation to the President for approval.

5. The Vice President will report the President’s decision to the Dean or unit head, the Director of Human Resources, and to the person submitting the request.

6. All terms and conditions will be stipulated in writing and signed by the applicant and the President. As with all contracted positions, continued satisfactory performance is expected.
X. **Grievance Procedure**

A. Grievances of the faculty are the responsibility of the Faculty Personnel Appeals Committee, the Termination for Cause Committee, and the Executive Committee of the Faculty Association. Those grievances pertaining to denial of promotion, non-reappointment, termination or dismissal for cause, are outlined above. All other grievances such as those having to do with salaries, assignments of teaching duties, assignment of space and other facilities, and propriety of conduct shall be covered by the procedures that follow.

B. If any faculty member feels that he/she has cause for grievance in any matter other than denial of promotion, non-reappointment or dismissal, he/she may petition the Executive Committee for redress.

C. The petition shall set forth in detail the nature of the grievance and shall state against whom the grievance is directed. It shall contain factual data, which the petitioner deems pertinent to his/her case, and shall indicate whether the petitioner will rest his case on the data submitted or wishes a hearing before the committee.

D. If the petitioner indicates that he/she will rest the case on the data submitted with the petition, the committee may, after weighing the evidence.

1. Determine that no justifiable case exists for a grievance and so inform the petitioner;

2. Seek to bring about a settlement of the issue, which will be satisfactory to both parties;

3. Determine that a settlement within the scope of its authority and responsibility is not possible or appropriate and report its findings and recommendations to the President of the University through the appropriate administrator and to the petitioner.

E. If the petitioner requests a hearing the procedures set forth above shall be followed.

F. The final decision in grievance matters rests with the President of the University and the Board of Trustees. The final decision will be in writing and will be directed to the Executive Committee and to the parties involved in the grievance.

G. All hearings and/or interviews pertaining to the grievance shall be private unless requested in writing by all parties to the complaint that they be held in public and that such request is unanimously approved by the committee.

H. Any person accused of unethical conduct shall be given the opportunity to answer all accusations. The person charged shall have the right to confront witnesses, to present evidence in his/her own behalf, and to be represented by advisors of his/her own choice.

I. When the above procedures are deemed by the Executive Committee to be inappropriate to a given complaint, the committee may modify the procedures provided the modifications are mutually agreeable to the parties to the complaint.
<table>
<thead>
<tr>
<th>Full-time Faculty</th>
<th>Animation</th>
<th>Communication</th>
<th>Fashion Design</th>
<th>Graphic Design</th>
<th>Interior Architecture</th>
<th>Psychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>PhD, Animation Studies, MA Animation, MFA Computer Animation</td>
<td>PhD, Communication, PhD, Film, PhD, Media Studies, PhD, Journalism, PhD, O.U., PhD, Visual Studies, PhD, Fine Arts</td>
<td>PhD, Fashion History, MFA Fashion Design, MFA Textiles Design</td>
<td>PhD, Graphic Design Studies, PhD, Art History (Film/Doc), PhD, Design Education, MFA Graphic Design</td>
<td>PhD, Interior Design History, PhD, Behavioral Sci of Space, PhD, Interior Design Theory, MFA Interior Design</td>
<td>PhD, Interior Architecture, MFA Architecture</td>
</tr>
<tr>
<td>Professional Experience</td>
<td>none required, none required, none required</td>
<td>none required, none required, none required, none required</td>
<td>none required, none required, none required</td>
<td>none required, none required, none required</td>
<td>none required, none required, none required, none required</td>
<td>none required, none required, none required, none required</td>
</tr>
<tr>
<td>Peer Reviewed Venues</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
</tr>
<tr>
<td>Peer Reviewed Venues</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
</tr>
<tr>
<td>Peer Reviewed Venues</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
</tr>
<tr>
<td>Degree</td>
<td>MA Animation, MA Computer Animation</td>
<td>MA Communication, MA Related Field, MA MFA Related Field</td>
<td>MA Related Field, MFA Related Field, MSGR Related Field</td>
<td>MA Graphic Design, MA Related Field, MFA Related Field, MSGR Related Field</td>
<td>MA Interior Design, MA Interior Architecture, MA Interior Design, MA Interior Architecture</td>
<td>MA Psychology, MA Art</td>
</tr>
<tr>
<td>Peer Reviewed Venues</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
</tr>
<tr>
<td>Peer Reviewed Venues</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
<td>Related Fields</td>
</tr>
</tbody>
</table>
Kirby Hall Pricing Plan for New Retrofitted Doors and Windows
July 15, 2008
Scale: \(\frac{7}{8}'' = 1' - 0'' \) if printed out on 11x17
View Content

<< Back

Interior Architecture, Full-time Faculty

Date: 7/7/2008

Woodbury University invites applications for a full-time faculty position in the Department of Interior Architecture commencing August 2009. Qualified candidates should have a terminal degree, or equivalent, in Interior Design, Fine Arts, or Architecture and must have one degree or significant course work in interior design or interior architecture. A strong professional portfolio or scholarly research, and educational experience are important. Ideal candidates should be able to focus on one or more of the following tracks in the curriculum: history and theory, behavioral aspects of space, or technology. Demonstrating how one or more of these tracks could be critically applied to upper division design studies is important. This is a non-tenure track position with faculty rank commensurate with teaching and professional experience and degrees held.

Responsibilities: Teach and advise undergraduate Interior Architecture students; mentor Independent studies and internships; participate in curriculum development and accreditation processes; serve on department and university committees; maintain active professional development through production of personal or commercial design through development of scholarly research, involvement in regional and national professional organizations; and other duties as assigned by the chair.

Qualifications: Candidates should have a strong understanding of architectural design as it focuses on the interior environment. They should also have an awareness of current digital representation and production requirements, relationship of the human body to the built interior environment, experiential qualities of interior spaces such as color, light and materiality. Understanding of CIDA standards and guidelines and ideas on how these standards are critically introduced into the curriculum is important.

The University: Woodbury is a small, private university (1,500 students) founded in 1884 with a strong history in design, architecture, and business, accredited by the Western Association of Schools & Colleges, and nestled in the Verdugo Mountains near the center of Los Angeles.

The Program: The Interior Architecture Department is a studio based design curriculum that strives to meld aesthetic, social and technical concerns of interior design. It is accredited by the Council for Interior Design Accreditation. Enrollment is between seventy-five and ninety students and currently has two and a half full-time faculty members.

Application: Review of applications begins immediately and will remain open until December 15, 2008. Please submit letter of application, statement of teaching philosophy, curriculum vitae, and three letters of recommendation to:

Randall Stauffer, Chair, Interior Architecture
Office of Human Resources
Woodbury University
7500 Glencoe Boulevard
Burbank, CA 91510-7846

Email: Marta.Carroll@woodbury.edu

Woodbury University is an EEO/AA Institution committed to multicultural diversity in its peoples and programs.

FOR IMMEDIATE RELEASE –

ART EXHIBITION: Rebecca Ripple - Solo Exhibition

September 16th- October 11th, 2008

Opening Reception: September 16th: 5:30-7:30 PM

Gallery hours: Wed.-Sat. 12:00PM-5:00PM
For images, please contact: Suzanne Adelman, Interim Gallery Director
Suzanne.Adelman@Woodbury.edu
323-259-9814

The Cabrini Gallery at Woodbury University in Burbank is proud to present the sculptural works of Rebecca Ripple. Ms. Ripple’s work incorporates the use of text, which often relates to a part of the body, with a surprising use of materials. Her sculptural work “Eyebrow” employs a bulbous intestinal form of string with negative space that spells ‘eyebrow’ and hangs on the wall at gut level. Other works, including “Yellow” continue surprise expectations: This piece, white magic tape builds up to form the word ‘yellow’ while hovering above this text is an arched shoulder-like structure that has charcoal black below and a white tape grid above.

Please join us Tuesday, September 16 from 5:30-7:30 PM for the opening reception.

Regular gallery hours are: Wed.-Sat 12:00PM-5:00PM

This event is free and open to the public.

Rebecca Ripple received her MFA in Sculpture from Yale University in 1995. Her work has been exhibited at the Kristi Engle Gallery, Brewery Project, Eagle Rock Center for the Arts, in Los Angeles, Rosamund Felsen Gallery in Santa Monica, and Tilt Gallery in Portland, among others. Her work has been reviewed in the LA Weekly, ArtScience, the Chicago Tribune, and American Craft. Ripple attended the Skowhegan School of Painting and Sculpture, and was awarded a Fellowship and Artist Residency at the Bemis Foundation in Omaha. She is currently a faculty member at California State University, Northridge.

Woodbury University’s Burbank Campus is located off the 5 Freeway:

1.818.767.0888
check us out online @ woodbury.edu
7500 Glenoaks Boulevard, Burbank, CA 91510-7846
Department of graphic design

Join us for re•mark, the annual exhibition of student work featuring logo and identity design, along with work from photography, typography, graphic design, advertising, motion graphics, package design, and web design.

5•9•08
7:00–8:00 pm | Cabrini Meeting Room, Cabrini Hall

Join us as we celebrate the School of Media, Culture & Design. The new school at Woodbury brings together multiple avenues of inquiry providing study in Graphic Design, Fashion Design, Animation, Psychology, Communication, and Interior Architecture.

Woodbury University
School of Media, Culture & Design
The ASIFA-Hollywood Animation Educators Forum Presents:

agifa student animation festival

Saturday October 18 2008, 10am – 7pm

Fletcher Jones Foundation Auditorium, Woodbury University,
7500 Glenoaks Boulevard, Burbank, California 91510

<table>
<thead>
<tr>
<th>Program of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>10am – 12pm Rare cartoons from the ASIFA Archive</td>
</tr>
<tr>
<td>12pm – 5pm Portfolio Review</td>
</tr>
<tr>
<td>1pm – 2pm Screening of all entries</td>
</tr>
<tr>
<td>2pm – 3pm Panel: State of the Animation Industry</td>
</tr>
<tr>
<td>3pm – 4pm Panel: Breaking into Animation</td>
</tr>
<tr>
<td>4pm – 5pm Screening of all entries</td>
</tr>
<tr>
<td>5pm – 6pm Reception hosted by Creative Talent Network</td>
</tr>
<tr>
<td>6pm – 7pm Award presentation and screening of winning films</td>
</tr>
</tbody>
</table>

Sponsored by:
Over the summer, the university contracted three consultants to review and analyze different aspects of the Design Center and Kirby Hall Facilities. The three firms and their area of expertise were as follows:

- Erin Powell Lighting Design
- Newson Brown Acoustics, LLC Acoustical Engineers
- Pacific Coast Process Solutions Mechanical Engineers

Attached at the end of this document are the actual reports from each of the consultants.

Summary of Evaluations

As with all of evaluations, the final result and recommendations of the different reports highlight possible solutions that need further consideration based on University Budget constraints, intentions of the original design, usability of the spaces, and desired outcomes of the different user groups.

The reports have been submitted to the Chief Financial Office, Ken Jones, the Sr. Vice President of Academic Affairs, David Rosen, the Director of the School of Media, Culture and Design, Edward Clift, and the Director of the School of Architecture, Norman Millar. The coordination of consultants and compilation of reports was done by Randy Stauffer, Chair of the Interior Architecture Department. At this point we have not discussed the results of the proposals in a public forum to determine the possible solutions.

Lighting Consultant

The lighting consultant pointed out some areas of concern for lighting. The Design Center’s main areas of concern mostly included the public spaces. The solution proposes the addition of new fixtures and the removal of existing fixtures. The actual fixture recommendations need further consideration so that they accommodate not only the lack of sufficient light but also the aesthetic considerations of the space.

The lighting in Kirby Hall proved more problematic due to the temporary intentions of the original design. In order to increase the light quality of the lighting in Kirby hall, additional interior architectural work needs consideration. Additional ceiling and partitions are needed to more fully enclose the dedicated studios and provide surfaces for more reflected light.

Acoustical Engineers

The acoustical engineers pointed out several areas in both the design center and Kirby hall that need addressing. In both buildings, sound transmission from room to room, both horizontally between classrooms and vertically between floor in the Design Center is rated poorly. In the design center they recommend eliminating the sound transmission between floors for two different possibilities. The most intrusive noise is low level sound of desks moving and people walking. This is easily fixed by adding resilient flooring on the second floor. The elimination of talking becomes more extensive for both buildings. This would entail creating full height wall to the underside of the structure in Kirby and finished ceiling in the Design Center. It would also require removing the louvers in the Design Center. Both the cost and original design intent needs discussion before we settle on a final solution.
The other major acoustical concern in the design center is the sound level of the cooling/exhaust fans. It appears as if the original installation did not follow the specifications outlined in the construction drawings. Correcting the fan speed may help eliminate some of these acoustical problems.

Mechanical Engineer

The solutions recommended for the mechanical systems are both costly and eliminate the original design intent of the building. One of the main factors of the original mechanical design was the use of an environmentally sustainable cooling and heating system. And while the cooling of the Design Center during the hottest days of the year is important taking the solutions do not take into account the reuse of the originally designed system. It will be important as a group to take the evaluation and discuss solutions that respect cost and original design intent.

Egress and Natural Light in Kirby

We have collected estimate for adding windows and doors to Kirby Hall. The pricing plans the estimates came from are attached at the end of this document.

Next Steps

From these reports we will develop a strategy the implements collectively agreed upon solutions. These solutions will more than likely be part of a phased strategy so that easily accomplished solutions are done soon and more complicated and costly solutions work within the scheduling and budget constraints of the University.
Design Center
&
Kirby Hall
Woodbury University

Lighting Analysis and Recommendations

Prepared and submitted by Erin G. Powell

April 17, 2008

Contact:
Erin G. Powell
Lighting Designer
818-486-3917
ErinGPowell@gmail.com
Design Center

1. Entry

Problem: Not enough light at night and no light for display cases.

Solution: Combination fixture from RSA Lighting which has a fluorescent down light component as well as PAR30 accent lights which could be incandescent or ceramic metal halide to aim at the display cases. Fixture is actually suspended and will use the existing circuit for power.

See cut sheets 1 and 2 in package - RSA Combo Classic PAR30 Inc and MH

2. Open Display Gallery

Problem: Needs more light for display wall.

Solution: Carolee feels that this can be solved by adding more of the existing fixtures to the track. Jerry says that the fixtures disappear and are costly to replace. Alternate solution: Linear fluorescent wall washing fixture with integral ballast from Elliptipar specially designed to wash walls as evenly as possible that mounts near top of wall by cantilevering out 18”-24”

See cut sheet 3 in package – Elliptipar W15

3. Computer Labs (2)

Problem: Needs light for whiteboards that are also used for pin ups and presentations

Solution: Add a linear wall wash with fluorescent T5 lamps – cable mounted between wall and HVAC system. Alternate Solution: LED Flood fixtures that mount to a junction box to wash the wall – CRI 77 – lower than the linear fluorescent CRI of 85 but more energy efficient. I recommend looking at a sample before moving ahead. Either solution should be switched separately at wall so it is only on when in use.

See cut sheets 4 and 5 in package – Elliptipar W7, iWBlast12P

4. Animation Studio

Problem: May need additional light, issue was not resolved by the group during the walk through so no solutions are offered at this time

5. Interior Design Studios

Problem: Niches near the center of the building need additional lighting

Solution: Add additional linear fluorescent fixture(s) to match existing fixtures above desks in niches, circuit with other fixtures
Design Center continued:

6. Rear Display Gallery

Problem: Not enough light for wall displays

Solution: Replace fixtures with surface mount individual adjustable compact fluorescent elliptical reflector wall wash fixtures or surface mounted continuous linear wall wash fixtures

See cut sheets 6 and 7 in package – Elliptipar W38, Elliptipar W20

7. Corridor/ Display Areas

Problem: Dark and unsuitable for displays

Solution: Replace every other existing fixture with a surface mounted compact fluorescent fixture for ambient light in the hallway. Remaining fixtures are replaced with a surface mount compact fluorescent elliptical reflector wall wash fixture that will provide more light than the CFL replacement R-lamps currently in use.

See cut sheets 8 and 9 in package – Winona 4941, Elliptipar W14
Kirby Hall

1. Classrooms

Problems: Current fluorescent troffers are irritating and cause eye strain and headaches. Walls not suitable for pinups.

Solutions: Replace current prismatic lens fixture with deep cell parabolic louver fixtures to minimize glare which should reduce headaches. Add semi-recessed linear slot wall wash fixture on separate switch along back and side walls for pin ups.

See cut sheets 10 and 11 in package – Prudential P8000, Elliptipar W26

2. Lobby

Problems: Current fixtures mount low on wall, are visually unattractive, and do not provide enough light for pin ups.

Solution: Change fixture to cantilever mounted linear wall wash fixture that mounts at top of wall to regain height for displays. Fixture will also shield the lamp from view eliminating the unsightly appearance that the current fixtures have.

See cut sheet 12 in package – Elliptipar W19

3. Studios

Problems: Lighting on walls is harsh and makes it difficult for students to work. Fixtures are too bright so students remove lamps or cover with cardboard. Lack of natural light makes the space feel cave like and unpleasant.

Solutions:
Walls Option 1: Change the fixtures to an up light to light the tent canopy and use gel sleeves to change the color from a white to a blue or slightly amber hue. This will provide gentle ambient light. Task light should be used on an as needed basis at individual desks to address the needs of the user.

Walls Option 2: Replace the current fixtures with a fixture that has better shielding for the lamp and washes the wall above and below the fixture. Again this will eliminate the direct glare from the lamps.

Day lighting Solution 1: Installation of ventilated skylights would allow natural light to help illuminate the space and give a sense of time passage which is essential to the human mind for a healthy environment. Heat and other gasses can escape through the skylights, helping to ventilate the space as well.

Day lighting Solution 2: Installation of Solatube Commercial product to introduce daylight lower into the space during the day. Benefits include reduced electricity usage during the day and visual enhancement of the space for the mental well being of the students.

See cut sheets 13 - 15 in package – Prudential Wal-Aparia, Prudential Wal-6, Solatube21o
• Combolight Suspended fixtures with the ability to mix various types of halogen, incandescent and metal halide lamps with a variety of fluorescent lamps

• Suitable for all types of horizontal surface mounting

• Available standard architectural finishes including black, white, industrial silver and polished chrome

• Available in many standard configurations for easy ordering. Custom configurations are available - contact the RSA factory for details

• Available lamps include:
 MR16 BIAXTM
 AR70 PLT
 AR111 T5
 PAR20 T5HO
 PAR20MH
 PAR30
 PAR30MH
 PAR38
 PAR38MH
 T4 G8.5MH

• Available with integral power supplies (low voltage electronic transformers or Aromat metal halide ballasts)

• Standard double gimbal lamp holders adjust 90° x 90°

• Fixture is all aluminum construction with a durable powder coat finish inside and out
COMBO CLASSIC SUSPENDED LINE VOLTAGE PAR30

- A grid style adjustable fixture that is horizontally suspended.
- Combines the use of Line Voltage PAR30 lamps with a choice of fluorescent lamp sources in many fixture configuration styles.

FIXTURE CONFIGURATIONS

A

B

C

D

E

F

G

H

I

J

K

L

See next page for dimensions

<table>
<thead>
<tr>
<th>Item #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS330</td>
<td>Combo Classic Suspended PAR30 120 volts</td>
</tr>
</tbody>
</table>

FLUORESCENT CELL

<table>
<thead>
<tr>
<th>Item #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BX40</td>
<td>40 watt BIAX®</td>
</tr>
<tr>
<td>BX50</td>
<td>50 watt BIAX®</td>
</tr>
<tr>
<td>PLL80</td>
<td>80 watt PL-L</td>
</tr>
<tr>
<td>PLT26</td>
<td>26 watt PL-T</td>
</tr>
<tr>
<td>PLT32</td>
<td>32 watt PL-T</td>
</tr>
<tr>
<td>PLT42</td>
<td>42 watt PL-T</td>
</tr>
<tr>
<td>T528</td>
<td>28 watt T5</td>
</tr>
<tr>
<td>T535</td>
<td>35 watt T5</td>
</tr>
<tr>
<td>T5HO39</td>
<td>39 watt T5HO</td>
</tr>
<tr>
<td>T5HO54</td>
<td>54 watt T5HO</td>
</tr>
</tbody>
</table>

FINISH

<table>
<thead>
<tr>
<th>Item #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK</td>
<td>Black</td>
</tr>
<tr>
<td>WH</td>
<td>White</td>
</tr>
<tr>
<td>S</td>
<td>Industrial Silver</td>
</tr>
<tr>
<td>PC</td>
<td>Polished Chrome</td>
</tr>
<tr>
<td>PT</td>
<td>Custom (Specify)</td>
</tr>
</tbody>
</table>

Ordering Example

<table>
<thead>
<tr>
<th>FIXTURE TYPE</th>
<th>FIXTURE CONFIGURATION</th>
<th>FLUORESCENT CELL</th>
<th>FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS330</td>
<td>J</td>
<td>BX50</td>
<td>S</td>
</tr>
</tbody>
</table>

Combo Classic Suspended, One light 120 volt PAR30 with Two 50 Watt BIAX® Cells, Industrial Silver Finish
COMBO CLASSIC PAR30 SUSPENDED FIXTURE CONFIGURATION DIMENSIONS

<table>
<thead>
<tr>
<th>PAR30 Fixture Configuration</th>
<th>BX40</th>
<th>BX50</th>
<th>PLL80</th>
<th>PLT26</th>
<th>PLT32</th>
<th>PLT42</th>
<th>TS28</th>
<th>TS35</th>
<th>TSH039</th>
<th>TSH054</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4 Light PAR30 with 1 Center Fluor. Cell</td>
<td>7.40"</td>
</tr>
<tr>
<td>B 4 Light PAR30 with 2 Center Fluor. Cells</td>
<td>79.85"</td>
<td>79.85"</td>
<td>79.85"</td>
<td>44.85"</td>
<td>45.85"</td>
<td>47.85"</td>
<td>126.85"</td>
<td>150.85"</td>
<td>102.85"</td>
<td>126.85"</td>
</tr>
<tr>
<td>C 2 Light PAR30 with 2 Outer Fluor. Cells</td>
<td>66.55"</td>
<td>66.55"</td>
<td>66.55"</td>
<td>31.55"</td>
<td>32.55"</td>
<td>34.55"</td>
<td>113.55"</td>
<td>137.55"</td>
<td>89.55"</td>
<td>113.55"</td>
</tr>
<tr>
<td>D 2 Light PAR30 with 2 Alternate Fluor. Cells</td>
<td>66.55"</td>
<td>66.55"</td>
<td>66.55"</td>
<td>31.55"</td>
<td>32.55"</td>
<td>34.55"</td>
<td>113.55"</td>
<td>137.55"</td>
<td>89.55"</td>
<td>113.55"</td>
</tr>
<tr>
<td>E 2 Light PAR30 with 2 Center Fluor. Cells</td>
<td>66.55"</td>
<td>66.55"</td>
<td>66.55"</td>
<td>31.55"</td>
<td>32.55"</td>
<td>34.55"</td>
<td>113.55"</td>
<td>137.55"</td>
<td>89.55"</td>
<td>113.55"</td>
</tr>
<tr>
<td>F 2 Light PAR30 with 1 Center Fluor. Cell</td>
<td>40.30"</td>
<td>40.30"</td>
<td>40.30"</td>
<td>22.80"</td>
<td>23.30"</td>
<td>24.30"</td>
<td>63.80"</td>
<td>75.80"</td>
<td>51.80"</td>
<td>63.80"</td>
</tr>
<tr>
<td>G 2 Light PAR30 with 1 Fluor. Cell</td>
<td>40.30"</td>
<td>40.30"</td>
<td>40.30"</td>
<td>22.80"</td>
<td>23.30"</td>
<td>24.30"</td>
<td>63.80"</td>
<td>75.80"</td>
<td>51.80"</td>
<td>63.80"</td>
</tr>
<tr>
<td>H 2 Light PAR30 with 2 Fluor. Cells</td>
<td>66.55"</td>
<td>66.55"</td>
<td>66.55"</td>
<td>31.55"</td>
<td>32.55"</td>
<td>34.55"</td>
<td>113.55"</td>
<td>137.55"</td>
<td>89.55"</td>
<td>113.55"</td>
</tr>
<tr>
<td>I 1 Light PAR30 with 1 Fluor. Cell</td>
<td>33.65"</td>
<td>33.65"</td>
<td>33.65"</td>
<td>16.15"</td>
<td>16.65"</td>
<td>17.65"</td>
<td>57.15"</td>
<td>69.15"</td>
<td>45.15"</td>
<td>57.15"</td>
</tr>
<tr>
<td>J 1 Light PAR30 with 2 Fluor. Cells</td>
<td>59.90"</td>
<td>59.90"</td>
<td>59.90"</td>
<td>24.90"</td>
<td>25.90"</td>
<td>27.90"</td>
<td>106.90"</td>
<td>130.90"</td>
<td>82.90"</td>
<td>106.90"</td>
</tr>
<tr>
<td>K 4 Light PAR30 Double Wide with 2 Fluor. Cells</td>
<td>14.05"</td>
</tr>
<tr>
<td>L 2 Light PAR30 Double Wide with 2 Fluor. Cells</td>
<td>33.65"</td>
<td>33.65"</td>
<td>33.65"</td>
<td>16.15"</td>
<td>16.65"</td>
<td>17.65"</td>
<td>57.15"</td>
<td>69.15"</td>
<td>45.15"</td>
<td>57.15"</td>
</tr>
</tbody>
</table>

- Solid aluminum construction.
- Double gimbal lamp holders provide 90° x 90° adjustability.
- Fluorescent cells available with a wide array of accessories such as high transmission overlays and parabolic louvers (see page 172)

Optional Accessories - See page 216 for details.
For fluorescent accessories see page 172.
COMBO CLASSIC SUSPENDED PAR30MH METAL HALIDE

• A grid style adjustable fixture that is horizontally suspended.
• Combines the use of PAR30 Metal Halide lamps with a choice of fluorescent lamp sources in many fixture configuration styles.

FIXTURE CONFIGURATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Combo Classic Suspended PAR30MH 39 watts</td>
</tr>
<tr>
<td>B</td>
<td>Combo Classic Suspended PAR30MH 70 watts</td>
</tr>
<tr>
<td>C</td>
<td>4 Light PAR30MH with 1 Center Fluor. Cell</td>
</tr>
<tr>
<td>D</td>
<td>4 Light PAR30MH with 2 Center Fluor. Cells</td>
</tr>
<tr>
<td>E</td>
<td>2 Light PAR30MH with 2 Outer Fluor. Cells</td>
</tr>
<tr>
<td>F</td>
<td>2 Light PAR30MH with 2 Alternate Fluor. Cells</td>
</tr>
<tr>
<td>G</td>
<td>2 Light PAR30MH with 1 Center Fluor. Cell</td>
</tr>
<tr>
<td>H</td>
<td>2 Light PAR30MH with 2 Fluor. Cells</td>
</tr>
<tr>
<td>I</td>
<td>1 Light PAR30MH with 1 Fluor. Cell</td>
</tr>
<tr>
<td>J</td>
<td>1 Light PAR30MH with 2 Fluor. Cells</td>
</tr>
<tr>
<td>K</td>
<td>4 Lt. PAR30MH Double Wide with 2 Fluor. Cells</td>
</tr>
<tr>
<td>L</td>
<td>2 Lt. PAR30MH Double Wide with 2 Fluor. Cells</td>
</tr>
</tbody>
</table>

See next page for dimensions
COMBO CLASSIC PAR30MH SUSPENDED FIXTURE CONFIGURATION DIMENSIONS

<table>
<thead>
<tr>
<th>PAR30MH Fixture Configuration</th>
<th>BX40</th>
<th>BX50</th>
<th>PLL80</th>
<th>PLT26</th>
<th>PLT32</th>
<th>PLT42</th>
<th>TS28</th>
<th>TS35</th>
<th>TSH039</th>
<th>TSH054</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4 Light PAR30MH with 1 Center Fluor. Cell</td>
<td>7.40”</td>
</tr>
<tr>
<td></td>
<td>53.60”</td>
<td>53.60”</td>
<td>53.60”</td>
<td>36.10”</td>
<td>36.60”</td>
<td>37.60”</td>
<td>77.10”</td>
<td>89.10”</td>
<td>65.10”</td>
<td>77.10”</td>
</tr>
<tr>
<td>B 4 Light PAR30MH with 2 Center Fluor. Cells</td>
<td>7.40”</td>
</tr>
<tr>
<td></td>
<td>79.85”</td>
<td>79.85”</td>
<td>79.85”</td>
<td>44.85”</td>
<td>45.85”</td>
<td>47.85”</td>
<td>126.85”</td>
<td>150.85”</td>
<td>102.85”</td>
<td>126.85”</td>
</tr>
<tr>
<td>C 2 Light PAR30MH with 2 Outer Fluor. Cells</td>
<td>7.40”</td>
</tr>
<tr>
<td></td>
<td>66.55”</td>
<td>66.55”</td>
<td>66.55”</td>
<td>31.55”</td>
<td>32.55”</td>
<td>34.55”</td>
<td>113.55”</td>
<td>137.55”</td>
<td>89.55”</td>
<td>113.55”</td>
</tr>
<tr>
<td>D 2 Light PAR30MH with 2 Alternate Fluor. Cells</td>
<td>7.40”</td>
</tr>
<tr>
<td></td>
<td>66.55”</td>
<td>66.55”</td>
<td>66.55”</td>
<td>31.55”</td>
<td>32.55”</td>
<td>34.55”</td>
<td>113.55”</td>
<td>137.55”</td>
<td>89.55”</td>
<td>113.55”</td>
</tr>
<tr>
<td>E 2 Light PAR30MH with 2 Center Fluor. Cells</td>
<td>7.40”</td>
</tr>
<tr>
<td></td>
<td>40.30”</td>
<td>40.30”</td>
<td>40.30”</td>
<td>22.80”</td>
<td>23.30”</td>
<td>24.30”</td>
<td>63.80”</td>
<td>75.80”</td>
<td>51.80”</td>
<td>63.80”</td>
</tr>
<tr>
<td>F 2 Light PAR30MH with 1 Center Fluor. Cell</td>
<td>7.40”</td>
</tr>
<tr>
<td></td>
<td>66.55”</td>
<td>66.55”</td>
<td>66.55”</td>
<td>31.55”</td>
<td>32.55”</td>
<td>34.55”</td>
<td>113.55”</td>
<td>137.55”</td>
<td>89.55”</td>
<td>113.55”</td>
</tr>
<tr>
<td>G 2 Light PAR30MH with 1 Fluor. Cell</td>
<td>7.40”</td>
</tr>
<tr>
<td></td>
<td>33.65”</td>
<td>33.65”</td>
<td>33.65”</td>
<td>16.15”</td>
<td>16.65”</td>
<td>17.65”</td>
<td>57.15”</td>
<td>69.15”</td>
<td>45.15”</td>
<td>57.15”</td>
</tr>
<tr>
<td>H 2 Light PAR30MH with 2 Fluor. Cells</td>
<td>7.40”</td>
</tr>
<tr>
<td></td>
<td>59.90”</td>
<td>59.90”</td>
<td>59.90”</td>
<td>24.90”</td>
<td>25.90”</td>
<td>27.90”</td>
<td>106.90”</td>
<td>130.90”</td>
<td>82.90”</td>
<td>106.90”</td>
</tr>
<tr>
<td>I 1 Light PAR30MH with 1 Fluor. Cell</td>
<td>7.40”</td>
</tr>
<tr>
<td></td>
<td>33.65”</td>
<td>33.65”</td>
<td>33.65”</td>
<td>16.15”</td>
<td>16.65”</td>
<td>17.65”</td>
<td>57.15”</td>
<td>69.15”</td>
<td>45.15”</td>
<td>57.15”</td>
</tr>
<tr>
<td>J 1 Light PAR30MH with 2 Fluor. Cells</td>
<td>7.40”</td>
</tr>
<tr>
<td></td>
<td>59.90”</td>
<td>59.90”</td>
<td>59.90”</td>
<td>24.90”</td>
<td>25.90”</td>
<td>27.90”</td>
<td>106.90”</td>
<td>130.90”</td>
<td>82.90”</td>
<td>106.90”</td>
</tr>
<tr>
<td>K 4 Light PAR30MH Double Wide with 2 Fluor. Cells</td>
<td>7.40”</td>
</tr>
<tr>
<td></td>
<td>14.05”</td>
</tr>
<tr>
<td>L 2 Light PAR30MH Double Wide with 2 Fluor. Cells</td>
<td>7.40”</td>
</tr>
<tr>
<td></td>
<td>33.65”</td>
<td>33.65”</td>
<td>33.65”</td>
<td>16.15”</td>
<td>16.65”</td>
<td>17.65”</td>
<td>57.15”</td>
<td>69.15”</td>
<td>45.15”</td>
<td>57.15”</td>
</tr>
</tbody>
</table>

- Solid aluminum construction.
- Double gimbal lamp holders provide 90° x 90° adjustability.
- Integral Aromat® metal halide ballast
- Fluorescent cells available with a wide array of accessories such as high transmission overlays and parabolic louvers (see page 172)
- Custom configurations are available (Consult RSA Customer Service)
- Also available in Recessed Configurations (see page 128- 149)

Optional Accessories - See page 216 for details. For fluorescent accessories see page 172.
For complete photometrics, see www.elliptipar.com.

Features
- Reflector optimized for T5 - precise optical control for wall lighting from minimal setbacks; optional dual lamp
- Snap-on clear acrylic lens for safety, easy maintenance - ideal for food service and healthcare settings
- Versatile - surface, cantilever or pendant mount
- Internal wireway - integral electronic ballast through wiring

Performance
Two parabolic reflector sections drive light to the bottom of the wall. An elliptical section shields the lamp from normal viewing angles and redirects its light to a parabola. Glare is minimized and asymmetry of the beam is maximized resulting in high beam efficiency and superior surface uniformity.

Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Specular extruded aluminum reflector</td>
</tr>
<tr>
<td>B</td>
<td>Aluminum hub with locking set screws</td>
</tr>
<tr>
<td>C</td>
<td>Die-cast aluminum end plates</td>
</tr>
<tr>
<td>D</td>
<td>Integral electronic ballast / internal wireway</td>
</tr>
<tr>
<td>E</td>
<td>UV and impact resistant acrylic snap-on lens</td>
</tr>
<tr>
<td>F</td>
<td>Surface, cantilever, or pendant hangers (ordered separately)</td>
</tr>
<tr>
<td>G</td>
<td>Tubular steel stem or arm</td>
</tr>
<tr>
<td>H</td>
<td>Die-cast aluminum mounting plate (1/4-20 fasteners by others)</td>
</tr>
<tr>
<td>I</td>
<td>Outlet box access opening (electrical feed)</td>
</tr>
<tr>
<td>J</td>
<td>Tubular steel stem or arm</td>
</tr>
<tr>
<td>K</td>
<td>Die-cast aluminum mounting plate (1/4-20 fasteners by others)</td>
</tr>
<tr>
<td>L</td>
<td>Recessed outlet box (by others)</td>
</tr>
</tbody>
</table>

Finish:
Semi-gloss white housing and end plates.

Cut Sheet #3
To Order

Project:

Type:

1 Source

F = Linear fluorescent

2 Style

124 = Medium smooth surface, integral ballast

3 Lamp

<table>
<thead>
<tr>
<th>Length (nominal)</th>
<th>Code</th>
<th>T5</th>
<th>T5HO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2' (0.6m)</td>
<td>T114</td>
<td>1 x F14T5</td>
<td>T124</td>
</tr>
<tr>
<td>3' (0.9m)</td>
<td>D214</td>
<td>2 x F14T5</td>
<td>D224</td>
</tr>
<tr>
<td>4' (1.2m)</td>
<td>T121</td>
<td>1 x F21T5</td>
<td>T139</td>
</tr>
<tr>
<td>5' (1.5m)</td>
<td>D221</td>
<td>2 x F21T5</td>
<td>D239</td>
</tr>
<tr>
<td>6' (1.8m)</td>
<td>T128</td>
<td>1 x F28T5</td>
<td>T155</td>
</tr>
<tr>
<td>8' (2.4m)</td>
<td>D228</td>
<td>2 x F28T5</td>
<td>D255</td>
</tr>
</tbody>
</table>

For complete lamp and ballast information, see Accessories Section. Standard T5 lamp color is 3000K / 80+ CRI.

4 Mounting

H = For use with accessory surface, pendant or cantilever hub mounting hangers.

Note: Order hangers separately. Specify end kit or intermediate hanger.

5 Finish

02 = Semi-gloss white

99 = Custom RAL or computer matched color to be specified, consult sales representative

6 Voltage/Ballast

<table>
<thead>
<tr>
<th>Electronic</th>
<th>Dimming*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 120V</td>
<td>T = 120V</td>
</tr>
<tr>
<td>2 = 277V</td>
<td>V = 277V</td>
</tr>
<tr>
<td>3 = 347V (Canada)*</td>
<td></td>
</tr>
</tbody>
</table>

* Consult sales representative for availability of 347V.

Note: Electrical feed must be located at an end of row.

For individually mounted luminaire, order one end kit. For a continuous row, order one end kit and one intermediate hanger for each additional luminaire in the row.

Example: Two rows of four reflectors requires 2 end kits and 6 intermediate hangers.

7 Option

00 = No options

0E = Integral emergency battery pack with indicator lamp and test button. Not available in 2' and 3' units. Operates one lamp.

Note: Requires unswitched feed to battery (by others).

0P = Natatorium (pool) use

XX = For modification not listed, include detailed description. Consult factory prior to specification.

8 Standard

0 = UL, Underwriters Laboratories

J = CSA, Canadian Standards Association

Example

F124 - T255 - H - 02 - 1 - 000

Medium smooth surface fluorescent for use with two 54W T5HO lamps in nominal 8 foot reflector. For use with accessory hub hangers. Semi-gloss white powder coat finish. Integral 2-lamp 120V electronic ballast, UL (Order end kit and intermediate mounting hangers separately.)

elliptipar

114 Boston Post Road, West Haven, Connecticut 06516, USA

Voice 203.931.4455 • Fax 203.931.4464 • www.elliptipar.com

Cut Sheet #3

Hangers

Order separately. See Accessories Section for specifications. Hangers include mounting plate, cover, 7/8" (22mm) O.D. tubular stem/arm and hub. End kit includes one electrical feed end hub and one non-electrical end hub. Intermediate hanger includes single non-electrical joiner hub.

Note: Electrical feed must be located at an end of row.

For individually mounted luminaire, order one end kit. For a continuous row, order one end kit and one intermediate hanger for each additional luminaire in the row.

Example: Two rows of four reflectors requires 2 end kits and 6 intermediate hangers.

The external shapes of the asymmetric reflectors are trademarks of elliptipar. Certain products illustrated may be covered by applicable patents and patents pending. For a list of patents, see Contents pages. These specifications supersede all prior publications and are subject to change without notice © 2007 elliptipar.
Lighting the Wall
Small fluted or smooth

Ceiling Mount: 1:8 Scale

Mounting Plate
(S mount)

Installation
(S mount)

Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Extruded aluminum mounting plate</td>
</tr>
<tr>
<td>B</td>
<td>Extruded aluminum ballast housing</td>
</tr>
<tr>
<td>C</td>
<td>AFE finish end kit (aluminum end plates and knobs)</td>
</tr>
<tr>
<td>D</td>
<td>Electronic ballast</td>
</tr>
<tr>
<td>E</td>
<td>Aluminum sidearm</td>
</tr>
<tr>
<td>F</td>
<td>Die cast aluminum end plate</td>
</tr>
<tr>
<td>G</td>
<td>Snap-in specular parabolic baffle (optional)</td>
</tr>
<tr>
<td>H</td>
<td>Specular extruded aluminum reflector</td>
</tr>
<tr>
<td>I</td>
<td>Aluminum reveal plate (black)</td>
</tr>
<tr>
<td>J</td>
<td>Mounting hole, (3) 9/32" (7mm) dia.</td>
</tr>
<tr>
<td>K</td>
<td>Knockout, (2) 7/8" (22mm) dia.</td>
</tr>
<tr>
<td>L</td>
<td>Support structure and fasteners (by others)</td>
</tr>
<tr>
<td>M</td>
<td>Conduit and connector (by others)</td>
</tr>
</tbody>
</table>

Finish:
- Style 105 fluted - bright clear anodized aluminum housing. Painted end plates, sidearms and ballast housing in choice of silver or semi-gloss black.
- Style 106 smooth - semi-gloss white housing and end plates. Painted surfaces - 6 stage pretreatment and electrostatically applied thermostat powder coat for stable, long lasting and corrosion resistant finish.

Mounting:
- **S mount** - mounting plate fastens flush to ceiling. Unit hinges on plate for hands-free access to wiring.
- **X mount** - stems, cables or cantilevers ordered separately

Electrical:
- Use 90°F wire for supply connections and through wire.
- **S mount** - 7/8" (22mm) dia. knockouts at ends of mounting plate for conduit feed (by others). Accessory end feed kit provides entry for surface conduit at end of ballast housing.
- **X mount** - electrical feed hanger mounts over recessed outlet box (by others) and **must be located at end of row**.

Housing hinges down for access to ballast and wiring, Optional #12 AWG prewired modular through wiring with quick connectors.

Features
- Unmatched T5/T5HO wall wash - ideal for office and retail perimeters, displays, art walls, marker boards, corridors
- **Adjustable** - accommodates setback and height of wall
- Versatile - surface, cantilever, stem or cable mounting
- Integral electronic ballast - dimming, emergency optional
- Optional parabolic cross baffle for lengthwise shielding

Performance
- Two parabolic reflector sections drive light to the bottom of the wall. An elliptical section shields the lamp from normal viewing angles and redirects its light to a parabola. Glare is minimized and asymmetry of the beam is maximized resulting in high beam efficiency and superior surface uniformity.

For complete photometrics, see www.elliptipar.com.

REV. 7/07
U.S. Patent D468,473 and other U.S. and foreign patents pending
Project: Type:

To Order

<table>
<thead>
<tr>
<th>F</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Linear fluorescent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Style</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Small fluted surface, integral ballast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Small smooth surface, integral ballast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lamp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamp Wattage (see chart below)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Lamps in Length, specify 1 or 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example: T228 = 8’ (2.4m) housing with two 28W T5 lamps (end-to-end)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>T5</td>
<td>Lamp(s)</td>
<td>T5HO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>---------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24” (610mm)</td>
<td>T114</td>
<td>1 x F14T5, 1 x F24T8/HO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36” (915mm)</td>
<td>T121</td>
<td>1 x F21T5, 1 x F39T8/HO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48” (1220mm)</td>
<td>T128</td>
<td>1 x F28T5, 1 x F54T8/HO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60” (1525mm)</td>
<td>T135</td>
<td>1 x F35T5, 1 x F80T8/HO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72” (1830mm)</td>
<td>T221</td>
<td>2 x F21T5, 2 x F39T8/HO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96” (2440mm)</td>
<td>T228</td>
<td>2 x F28T5, 2 x F54T8/HO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For complete lamp and ballast information, see Accessories Section. Standard T5 lamp color is 3000K / 80+ CRI.
* Add 3/4” (19mm) to row or single unit for AFE Finish End Kit.

4 Mounting

<table>
<thead>
<tr>
<th>S</th>
<th>Ceiling (surface) mount</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>For use with pendant stem, cable or cantilever hangers (order separately)</td>
</tr>
</tbody>
</table>

5 Finish

| Style 105 Fluted |
| Bright clear anodized reflector with painted components in choice of: |
| 01 | Silver |
| 81 | Semi-gloss black |
| Style 106 Smooth |
| 02 | Semi-gloss white |
| 99 | Custom RAL or computer matched color to be specified, consult sales representative |

6 Voltage/Ballast

Electronic Dimming

1 = 120V
2 = 277V
3 = 347V (Canada)

Note: Not available for use with cable hangers.

* Consult sales representative for dimming 5 lamps (lamp codes Tx35, Tx80). Availability for wattages and voltages varies with ballast manufacturer and control type - see www.elliptipar.com for additional dimming specifications and limitations.

Note: When dimming X mount luminaires, order two (2) electrical feed stems, cables or cantilevers for each single unit or row to accommodate the control circuit.

7 Option (See Accessories Section for specifications)

00 = No option
08 = Snap-in parabolic cross baffles, specular finish, provides 35” lengthwise shielding
OE = Integral emergency battery pack with indicator lamp and test button. Available in 4’, 5’, 6’ and 8’ units (lamp codes T128, T135, T221, T228, T155, T239 and T255). Operates one lamp
OK = Prewired modular #12 AWG through wiring with quick connectors
EK = Combination of emergency battery pack and prewired modular through wiring as described above
BE = Combination of parabolic baffle and emergency battery
BK = Combination of parabolic baffle and modular wiring
BC = Combination of parabolic baffle, emergency battery and modular wiring
XX = For modification not listed, include detailed description. Consult factory prior to specification.

8 Standard

0 = UL, Underwriters Laboratories
J = CSA, Canadian Standards Association

Example

F105 - T228 - S - 81 - 1 - 0B0

Small fluted surface model for use with two 4’ F28T5 lamps, 96’ long housing (not including AFE finish end kit, order separately). Ceiling mounted. Bright reflector with semi-gloss black end plates, side arms and ballast housing. Integral 120V electronic ballast. Snap-in parabolic cross baffles. UL.

Hangers

Order separately. See Accessories Section for specifications.
Singles - order one non-electrical and one electrical feed hanger for each module (X mount).
Rows - order one non-electrical hanger for each module (X mount) plus one electrical feed for each row.

Note: For each single or row with dimming (voltage/ballast code T or V), order one additional electrical feed and subtract one non-electrical hanger.

Electrical feed(s) must be located at an end of row.

Accessories

Order separately. See Accessories Section for specifications.

AFE6 = Finish end kit, one required for each row or single unit. Adds 3/4” (17mm) to length.

02	White
07	Silver
08	Black

ASC06000 = Finish end kit, bracket with 7/8” dia. entry to secure surface conduit.
To order by Row Code - T5 Lamps

When the Style 105 / 106 small integral T5 fluorescent is run continuously in a straight row, elliptipar offers the option of specifying and ordering the entire row as one catalog number. Ordering by row eliminates the need to calculate length, type and quantity of reflectors and end plates.

Steps to specify Row Code:
1. Determine lamp type and select corresponding lamp code ($S=T5, V=THO$).
2. Determine maximum available length for row and round up to nearest foot. Find nominal row length in chart (col. 1).
3. Determine what lengths/wattages of lamps will be used and select the corresponding lamp combination codes (col. 2).
4. If for a given nominal row length a preferred lamp combination is not listed, select the next shortest row that is available in the desired lamp combination.
5. Once the nominal row length and lamp combination has been found in the chart; note the actual overall row length (last column). Also consider if the quantity and lengths of the individual luminaires suit the installation.
6. Enter the four character Row Code in place of the Lamp Code described on page W-7.1. The remainder of the catalog number is formed as shown on page W-7.1.

Note: Stem, cable or cantilever hangers for use with X mount luminaires MUST be ordered separately.

3 Row Code

<table>
<thead>
<tr>
<th>Lamp Combination(s) *</th>
<th>Row Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>S = All nominal 3' lamps</td>
<td></td>
</tr>
<tr>
<td>V = All nominal 4' lamps</td>
<td></td>
</tr>
<tr>
<td>D = Nominal 3' and 4' lamps</td>
<td></td>
</tr>
<tr>
<td>F = Nominal 3' and 5' lamps</td>
<td></td>
</tr>
<tr>
<td>G = Nominal 4' and 5' lamps</td>
<td></td>
</tr>
</tbody>
</table>

Nominal Row Length in feet, between 3' and 50' **

Note: Row lengths over 50' can be formed by combining shorter row lengths. (Example: a 60' row can be ordered as two 30' rows.)

Example

F106 - S36B - S - 02 - 2 - 000

Nominal 36' long row of Style 106 small smooth T5 fluorescent using only nominal 4' (28W) lamps. Row includes four nominal 8' reflectors with two 4' lamps, one nominal 4' reflector with one 4' lamp, one AFE finish end kit and integral 277V electronic ballasts. Overall row length is 36' 0-3/4".

Features

- **Time saving - simplifies specification and ordering**
- **One catalog number - includes all necessary reflectors to install row plus AFE finish end kit (X mount stems, cable or cantilever hangers are ordered separately)**
- **Assured fit - all you need is the maximum available length of the ceiling**
iW Blast 12 Powercore combines the Color Kinetics® iW Blast 12 fixture with Powercore® technology, resulting in a robust, high-performance white light system with improved operational efficiency and simplified installation for interior or exterior wall-washing and grazing applications.

The iW Blast 12 Powercore fixture is a color-temperature controllable, high-quality white light with fixture-to-fixture color consistency which is well suited for enhancing architectural detail, theatrical stage, and studio lighting. The fixture provides flexible color temperature and brightness control through Chromacore®, the proven technology that underlies Color Kinetics existing intelligent solid-state lighting systems. When applied to IntelliWhite products, Chromacore controls channels of warm white and cool white LEDs to produce outputs of color temperatures in the range of 3000–6500 Kelvin from a single fixture. iW Blast 12 Powercore allows the adjustment of intensity while either maintaining constant color temperature or varying the color temperature.

Powercore technology drives LED systems, integrating power and data management directly into the fixture, eliminating the need for an external power supply. Powercore surpasses traditional power supply technology by streamlining multiple conversion and regulation stages into a single, flexible, microprocessor-controlled power stage that controls power output to LED systems directly from line voltage.

iW Blast 12 Powercore is a stylish, rugged, sealed product designed for indoor and outdoor installations. It is available with a soft-focus or a clear tempered glass lens and either a black or white powder coat finish. The fixture has a single 4-conductor cable and can attach to standard junction boxes with 3.5" center-to-center hole spacing. The pre-assembled mounting base provides smooth, friction-free rotation. The base is designed to simplify installation and to offer a versatile range of light positioning.

iW Blast 12 Powercore receives data via iW Data Enabler – a data formatting device designed for use with IntelliWhite color temperature controllable fixtures featuring Powercore technology. When used in conjunction with any iW controller, varying color temperature and brightness control can be achieved at the push of a button.

iW Blast 12 Powercore Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR TEMP RANGE</td>
<td>3000K to 6500K adjustable</td>
</tr>
<tr>
<td>SOURCE</td>
<td>High intensity power LEDs</td>
</tr>
<tr>
<td>BEAM ANGLE</td>
<td>Narrow Spot clear lens, Narrow Flood frosted lens (FWHM) intensity</td>
</tr>
<tr>
<td>HOUSING</td>
<td>Die Cast Aluminum, black or white powder coat finish</td>
</tr>
<tr>
<td>LENS</td>
<td>Soft-focus tempered glass or clear tempered glass</td>
</tr>
<tr>
<td>CONNECTORS</td>
<td>Unified power and data cable (4C 18 AWG SJTW or 4C 1 mm² HO7RNF)</td>
</tr>
<tr>
<td>LISTINGS</td>
<td>UL/cUL, CE</td>
</tr>
<tr>
<td>COMMUNICATIONS SPECIFICATIONS</td>
<td>Color Kinetics iW Data Enabler</td>
</tr>
</tbody>
</table>

Electrical Specifications

- **Input Power**: 100-240VAC, 50-60 Hz
- **Power Consumption**: 50W at 110-240VAC (60W at 100VAC)
- **Power Factor**: 0.95 or greater at 120VAC

Environmental Specifications

- **Temperature Range**: -4°F to 122°F (-20°C to 50°C) based on testing of specific product
- **Protection Rating**: IP66

Lifetime of Solid State Lighting Systems

In traditional lamp sources, lifetime is defined as the point at which 50% of the lamps fail. This is also termed Mean Time Between Failure (MTBF). LEDs are semiconductor devices and have a much longer MTBF than conventional sources. However, MTBF is not the only consideration in determining useful life. Color Kinetics uses the concept of useful light lifetime which is defined as the number of hours a fixture will operate without any optical degradation. This is measured under normal operating conditions. Lumen depreciation information is based on LED manufacturers’ source life data as well as other third party testing. Low temperatures and controlled effects have a beneficial effect on lumen depreciation. Overall system lifetime could vary substantially based on usage and the environment in which the system is installed.

Temperature and effects will affect lifetime. Color Kinetics rates product lifetime using lumen depreciation to 70% of original light output. When the fixture is running on warm or cool, at room temperature, the LED lifetime is in the range of 50,000 – 70,000 hours. This is LED manufacturers’ test data. High output is defined as any LED device that is 1/2 watt or above. For more detailed information on source life, please see www.colorkinetics.com/lifetime.
iW BLAST 12 POWERCORE CLEAR LENS

PHOTOMETRIC PERFORMANCE

SOURCE SPECIFICATIONS

Optics: Clear glass diffuser
Source: 30 LEDs (20 warm white, 10 cool white)
Beam Angle: 18°
Distribution: Symmetric direct illumination
CCT: Adjustable 3,000-6,500K
CRI: 78 All, 71 Warm, 83 Cool

ILLUMINANCE DISTRIBUTION

<table>
<thead>
<tr>
<th></th>
<th>1.0'/0.3m</th>
<th>2.0'/0.6m</th>
<th>3.0'/1.0m</th>
<th>4.0'/1.2m</th>
<th>5.0'/1.5m</th>
<th>6.0'/2.0m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>16.1</td>
<td>2.0</td>
<td>2.4</td>
<td>2.5</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>3.7</td>
<td>39.8</td>
<td>7.8</td>
<td>12.6</td>
<td>12.7</td>
<td>6.1</td>
<td>2.3</td>
</tr>
<tr>
<td>7.6</td>
<td>81.8</td>
<td>29.5</td>
<td>77.2</td>
<td>114.0</td>
<td>29.6</td>
<td>6.2</td>
</tr>
<tr>
<td>8.2</td>
<td>88.3</td>
<td>28.8</td>
<td>73.8</td>
<td>114.0</td>
<td>29.4</td>
<td>6.1</td>
</tr>
<tr>
<td>3.7</td>
<td>39.8</td>
<td>7.5</td>
<td>12.5</td>
<td>12.4</td>
<td>6.1</td>
<td>2.3</td>
</tr>
<tr>
<td>1.5</td>
<td>16.1</td>
<td>2.0</td>
<td>25.8</td>
<td>24.8</td>
<td>8.6</td>
<td></td>
</tr>
</tbody>
</table>

CANDLE POWER DISTRIBUTION

Measured on: All, reflectance model 80/50/20%
Beam center: 3099 cd
Thin dashed lined: Indicates 50% of peak

LIGHT OUTPUT

<table>
<thead>
<tr>
<th></th>
<th>TOTAL OUTPUT</th>
<th>POWER</th>
<th>EFFICACY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(lumens)</td>
<td>(watts)</td>
<td>(Lm/W)</td>
</tr>
<tr>
<td>ALL</td>
<td>766</td>
<td>43.9</td>
<td>17.4</td>
</tr>
<tr>
<td>WARM</td>
<td>432</td>
<td>43.3</td>
<td>10.0</td>
</tr>
<tr>
<td>COOL</td>
<td>623</td>
<td>43.1</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Note: Efficacy figures are for a complete tested fixture not simply a lamp source.

CRI

It is common practice in the lighting industry to use color rendering index (CRI) to compare the properties of various light sources. There are known deficiencies and limitations associated with CRI and as a result, it is not always an accurate indicator of good object color appearance. This is especially true for LED-based sources. Until a better method for measuring color rendering in LEDs is accepted, Color Kinetics measures CRI in accordance with the current CIE 13.3-1995 standard using the Ra calculation. The reference illuminants employed are the Planckian locus below 5000K and CIE Daylight reference above 5000K. All measurements for Color Kinetics products are performed by third party laboratories using NIST-traceable instruments.
iW Blast 12 Powercore Frosted Lens

Photometric Performance

Source Specifications

- **Optics:** Soft-focus tempered glass
- **Source:** 30 LEDs (20 warm white, 10 cool white)
- **Beam Angle:** 24°
- **Distribution:** Symmetric direct illumination
- **CCT:** Adjustable 3,000-6,500K
- **CRI:** 77 All, 70 Warm, 83 Cool

Illuminance Distribution

<table>
<thead>
<tr>
<th></th>
<th>3'</th>
<th>6'</th>
<th>9'</th>
<th>15'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3m</td>
<td>2.2</td>
<td>4.9</td>
<td>8.4</td>
<td>9.7</td>
</tr>
<tr>
<td>0.6m</td>
<td>23.7</td>
<td>52.7</td>
<td>90.4</td>
<td>104.4</td>
</tr>
<tr>
<td>0.9m</td>
<td>3.2</td>
<td>9.6</td>
<td>21.7</td>
<td>21.2</td>
</tr>
<tr>
<td>1.0m</td>
<td>3.9</td>
<td>14.9</td>
<td>50.5</td>
<td>49.6</td>
</tr>
<tr>
<td>1.2m</td>
<td>3.7</td>
<td>16.5</td>
<td>72.3</td>
<td>72.2</td>
</tr>
<tr>
<td>1.5m</td>
<td>2.6</td>
<td>9.9</td>
<td>36.0</td>
<td>35.7</td>
</tr>
<tr>
<td>2.0m</td>
<td>28.0</td>
<td>106.6</td>
<td>387.5</td>
<td>43.3</td>
</tr>
<tr>
<td>2.5m</td>
<td>1.6</td>
<td>4.3</td>
<td>9.7</td>
<td>9.5</td>
</tr>
<tr>
<td>3.0m</td>
<td>17.2</td>
<td>46.3</td>
<td>104.4</td>
<td>102.3</td>
</tr>
</tbody>
</table>

- **Units:** Footcandles (top)/Lux (bottom)
- **Location:** Botton of grid, 3'/1m from surface, light at a 45° angle off horizontal
- **Measured on:** All, reflectance model 80/50/20%

Candle Power Distribution

- **Measured on:** All
- **Thin dashed lined:** Indicates 50% of peak

Light Output

<table>
<thead>
<tr>
<th></th>
<th>TOTAL OUTPUT (lumens)</th>
<th>POWER (Watts)</th>
<th>EFFICACY (Lm/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>683</td>
<td>48.9</td>
<td>14.0</td>
</tr>
<tr>
<td>WARM</td>
<td>424</td>
<td>48.1</td>
<td>8.8</td>
</tr>
<tr>
<td>COOL</td>
<td>530</td>
<td>48.1</td>
<td>11.0</td>
</tr>
</tbody>
</table>

- **Note:** Efficacy figures are for a complete tested fixture not simply a lamp source.

CRI

It is common practice in the lighting industry to use color rendering index (CRI) to compare the properties of various light sources. There are known deficiencies and limitations associated with CRI and as a result, it is not always an accurate indicator of good object color appearance. This is especially true for LED-based sources. Until a better method for measuring color rendering in LEDs is accepted, Color Kinetics measures CRI in accordance with the current CIE 13.3-1995 standard using the Ra calculation. The reference illuminants employed are the Planckian locus below 5000K and CIE Daylight reference above 5000K. All measurements for Color Kinetics products are performed by third party laboratories using NIST-traceable instruments.
iW Blast 12 Powercore

Physical Dimensions

Front
- 12.6” (32.0 cm)
- 5.4” (13.7 cm)
- 3.1” (8.0 cm)
- 4.8” (12.1 cm)

Base
- Dia. 4.7” (11.9 cm)
- Dia. 3.5” (8.9 cm)
- 90° Typ

Side
- 1.4” (3.6 cm)
- 3.0” (7.6 cm)
- 8.5” (21.7 cm)
- 6.4” (16.3 cm)

Side
- 6.6” (16.8 cm)

iW Blast 12 Powercore

Item # 523-000001

Data/Power Connector Uniform power and data cable

Power Requirement
- 50W@110-240VDC
- 60W@100VAC

Weight
- 8 lb (3.6 kg) with cord

Philips Solid-State Lighting Solutions · 3 Burlington Woods Drive · Burlington, MA 01803 · USA
Tel 888 FULL RGB · Tel 617 423 9999 · Fax 617 423 9998 · info@colorkinetics.com · www.colorkinetics.com
OPTIBIN®

There are inherent variations in the fabrication processes of all semiconductor materials. For LEDs, this variance results in differences in the color and intensity of light output as well as electrical characteristics. Due to these differences, LED manufacturers sort production into "bins," but insuring the availability of a single bin is very difficult.

To minimize this issue and achieve optimal color consistency in its products, Color Kinetics has developed and uses a proprietary technology called Optibin. Optibin is an advanced production binning optimization process that minimizes the effects of LED variance for the best possible output uniformity in the final product. Color Kinetics Optibin technology gives you the most consistent control of color and intensity from product to product.
Lighting the Wall

Specifications

A Aluminum canopy
B Chrome cap nuts
C Aluminum yoke
D Aluminum ballast compartment
E Contoured aluminum end plates
F Track (by others)
G Universal track clamp (small shown)
H Integral electronic ballast
I Accessory snap-in specular parabolic cross baffle
J Specular extruded aluminum reflector
K Specular extruded aluminum reflector
L Track pendant adapter (by others)
M 3 conductor cord
N Pivoting hanger bar
O Outlet box (by others)

Finish:
Bright clear anodized aluminum reflector with black end plates, yoke and canopy or all exterior parts semi-gloss white.
Painted surfaces - 6 stage pretreatment and electrostatically applied thermoset powder coat for stable, long lasting and corrosion resistant finish.
Reflector and internal end plates - extruded high purity aluminum with clear anodized specular finish. All luminaire hardware - stainless steel. All mounting hardware - zinc or cadmium plated.

Mounting:
E mount - canopy mounts over recessed outlet box.
Cantilever ordered separately; specify **X** mount.
K mount - universal mechanical track connector clamps securely to surface mounted track. Two sizes available to fit most single and multiple circuit tracks. Where track is mounted flush to surface, use the accessory track shim kit to provide space for clamp. For recessed track, consult factory.
Fixture weight is approximately 10 lb/4.5 kg. Suitable support of track is required (by installing contractor).

Electrical:
Integral electronic HPF thermally protected class P ballast.
Optional electronic dimming ballast (**E** and **X** mount only); compatible dimmer switch required (by others). Consult sales representative for compatibility and specifications.
Dimming not available with **K** track mount.

K mount - cord exits ballast housing and is wired to track pendant adapter (supplied by others to elliptipar for factory installation). Also available with cord and 3 prong plug for connection to adjacent track convenience receptacle adapter (not included).

Standard:
UL listed or CSA certified. (Not applicable to **K** mount when used with track adapter by others).

Features
- **4X** focuses the light of two 40, 50 or 55W lamps for high impact wall, display or merchandise lighting
- Universal track mount - securely grips any surface track
- Electronic ballast - low energy, quiet, light weight
- Extruded reflector - will not deform during maintenance
- Accessory snap-in specular parabolic cross baffle

Performance
Two parabolic reflector sections drive light to the bottom of the wall. An elliptical section shields the lamp from normal viewing angles and redirects its light to a parabola. Glare is minimized and asymmetry of the beam is maximized resulting in high beam efficiency and superior surface uniformity.

For complete photometrics, see www.elliptipar.com.

U.S. Patents 5,434,762 and RE37,310E, Canadian Patent 2,147,106 and foreign.
To Order

Cut Sheet #6

4X® Style 119

To Form a Catalog Number

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

1. **Source**
 - F = Long twin tube compact fluorescent

2. **Style**
 - 119 = Large contoured surface, integral ballast

3. **Lamp**
 - = Long Twin Tube CF Lamp Code
 - Lamp Configuration
 - L1 = Single-lamp cross section
 - X2 = 4X® (dual-lamp) cross section (not available for 80W)

4. **Mounting**
 - E = External yoke on ceiling canopy
 - X = External yoke for use with accessory cantilever mounting assembly (order separately)
 - K = Universal track mount (requires Option Code to specify mechanical/electrical connection - available 120V only)

5. **Finish**
 - 81 = Bright anodized reflector with black end plates, ballast housing, yoke and canopy/track clamp
 - 02 = Semi-gloss white

6. **Voltage/Ballast**
 - Electronic * Dimming *
 | | | | |
 | 1 | 2 | 3 |
 | 120V | 120V | 277V | 277V |
 - 347V (Canada)

 * Specify 120V only for K mount (track).
 * Dimming not available for K mount (track). Availability for wattages and voltages varies - see www.elliptipar.com for specs & limitations.

Option

- **7**
 - **00** = No options
 - **XX** = For modification not listed, include detailed description. Consult factory prior to specification.

Track Option Codes:

For small or large track clamp (see chart for compatibility). For electrical connection, choose cord with 3-prong plug for use with track receptacle adapter or cord hardwired to track pendant adapter. Adapters supplied by others. Specify appropriate option code from chart below.

<table>
<thead>
<tr>
<th>Manufacturer/ Series</th>
<th>3-Prong Receptacle Adapter *</th>
<th>Option Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capri</td>
<td>KA17</td>
<td>TB</td>
</tr>
<tr>
<td>Halo Miniature</td>
<td>L957</td>
<td>AB</td>
</tr>
<tr>
<td>Halo 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indy Low Profile</td>
<td>33L</td>
<td>TB</td>
</tr>
<tr>
<td>Indy Single Circuit</td>
<td>33T</td>
<td>TB</td>
</tr>
<tr>
<td>Indy Two Circuit</td>
<td>33TU</td>
<td>TB</td>
</tr>
<tr>
<td>Juno</td>
<td>T33</td>
<td>T31</td>
</tr>
<tr>
<td>Lightolier Basic</td>
<td>6085</td>
<td>TB</td>
</tr>
<tr>
<td>Lytespan 39</td>
<td>T31</td>
<td>7599</td>
</tr>
<tr>
<td>Prescolite</td>
<td>T40</td>
<td>AA</td>
</tr>
<tr>
<td>Progress TRAK-1</td>
<td>P8751</td>
<td>TB</td>
</tr>
<tr>
<td>Staff 1 Circuit</td>
<td>58051</td>
<td>AL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small track clamp - fits tracks up to 7/8" high</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large track clamp - fits tracks up to 1-3/4" high</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accessories

Order separately. See Accessories Section for specifications.

<table>
<thead>
<tr>
<th>VCL</th>
<th>36 = Cantilever, 36" (915mm) setback</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>= White</td>
</tr>
<tr>
<td>08</td>
<td>= Black</td>
</tr>
</tbody>
</table>

ABL000D = Snap-in parabolic cross baffle, specular aluminum, 35° shielding

ATKS020 = Track shim kit, spaces track 3/32" (2.4mm) off mounting surface, order one kit per 8’ (2.4m) of track

Standard

- **0** = UL, Underwriters Laboratories
- **J** = CSA, Canadian Standards Association

Note: Not applicable to K mount when used with track adapter by others.

Elliptipar

114 Boston Post Road, West Haven, Connecticut 06516, USA
Voice 203.931.4455 • Fax 203.931.4464 • www.elliptipar.com
Specifications

<table>
<thead>
<tr>
<th>Style 144: 1:8 Scale</th>
<th>Style 144: 1:8 Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Electronic ballast</td>
<td>Extruded aluminum back plate</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Specular extruded aluminum reflector (adjustable aiming)</td>
<td>High-impact polycarbonate baffle, 25° shielding (matte gray) [Optional clear UV resistant acrylic lens]</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>Extruded aluminum housing</td>
<td>Conduit entry, 7/8" (22mm) dia. (S mount)</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>Aluminum decorative end plates (order separately)</td>
<td>Mounting holes, 9/32" (7mm) dia.</td>
</tr>
<tr>
<td>J</td>
<td>K</td>
</tr>
<tr>
<td>Aluminum joiner/reveal plates (matte gray)</td>
<td>Structure and fasteners (by others)</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>Conduit and connector (by others)</td>
<td>Power*</td>
</tr>
</tbody>
</table>

Finish:

Matte white housing and decorative end plates. Joiner/reveal plates and baffle finished matte gray. Optional clear acrylic lens replaces baffle.

Painted surfaces - 6 stage pretreatment and electrostatically applied thermoset powder coat for stable, long lasting and corrosion resistant finish.

Reflector - extruded high purity aluminum with clear anodized specular finish. All luminaire hardware - stainless steel.

Mounting:

S mount - back plate mounts flush to ceiling.

X mount - cantilevers, stems or cables ordered separately.

Cantilever - 1" x 2" steel arm, suitable support structure required. Adjustable interface plate (concealed under canopy) allows leveling of arms +/- 5°.

Pendant stem - 11/16" O.D. aluminum, internally threaded. Cable - 1/16" dia. 7x7 aircraft cable, field adjustable length. Hangers at ends of row (or single) are located 2-1/2" (64mm) from end. Intermediate hangers are centered on joint.

Electrical:

S mount - 7/8" (22mm) diameter knockouts located at each end of back plate for conduit feed (by others). Use 90°C wire for supply connections and through wire.

X mount - electrical feed hanger mounts over recessed outlet box (by others). Cantilever and stem electrical feeds supplied with #14 AWG leads (must be located at end of row). Cable feed includes 18/4 cord (can be located at end or joint). Housing hinges down for access to ballast and wiring. Optional #12 AWG prewired modular through wiring with quick connectors.

Integral electronic HPF thermally protected class P ballast with end-of-life protection.

Optional electronic dimming ballast. Compatible dimming control is required (by others). Consult sales representative for specifications.

Optional integral emergency battery operates one lamp. Separate unswitched supply is required.

Standard:

UL listed or CSA certified.

Features

- T5/T5HO for precise optical control - adjustable aiming
- Matte white elliptical housing blends with ceiling - matte gray baffle nearly matches housing when lighted
- Designed to be inconspicuous - lights entire wall evenly without amplifying surface imperfections (unlike slots)
- Ideal for corridors, art walls, displays, chalkboards, signs

Performance

Two parabolic reflector sections drive light to the bottom of the vertical surface. An elliptical section redirects light that is normally wasted back to a parabola. Glare is minimized and asymmetry of the beam is maximized resulting in high beam efficiency and superior surface uniformity.

For complete photometrics, see www.elliptipar.com.
To Order

To form a Catalog Number

F | 1, 4, 4 | T
1 2 3 4 5 6 7 8 9

1 Source

F = Linear fluorescent

2 Style

144 = Xtra small enclosed semi-elliptical, one-way, integral ballast

3 Lamp

Note: To order by overall row length, enter ROW CODE in place of Lamp Code below (see Row Charts on page 20.2). Row Codes specify a row complete with all necessary luminaries and end plates. Hangers are ordered separately.

T = T5 Fluorescent Lamp Code

Lamp Wattage (see chart below)

Number of Lamps in Length, specify 1 or 2

Example: T155 = 4’ (1.2m) housing with one 54W T5HO lamp

<table>
<thead>
<tr>
<th>Length</th>
<th>T5</th>
<th>T5HO</th>
</tr>
</thead>
<tbody>
<tr>
<td>24” (610mm)</td>
<td>T114 1 x F14T5</td>
<td>T124 1 x F24T5/HO</td>
</tr>
<tr>
<td>36” (915mm)</td>
<td>T121 1 x F21T5</td>
<td>T139 1 x F39T5/HO</td>
</tr>
<tr>
<td>48” (1220mm)</td>
<td>T128 1 x F28T5</td>
<td>T155 1 x F54T5/HO</td>
</tr>
<tr>
<td>60” (1525mm)</td>
<td>T135 1 x F35T5</td>
<td>T180 1 x F80T5/HO</td>
</tr>
<tr>
<td>72” (1830mm)</td>
<td>T221 2 x F21T5</td>
<td>T239 2 x F39T5/HO</td>
</tr>
<tr>
<td>96” (2440mm)</td>
<td>T228 2 x F28T5</td>
<td>T255 2 x F54T5/HO</td>
</tr>
</tbody>
</table>

For complete lamp and ballast information, see Accessories Section. Standard T5 lamp color is 3000K / 80+ CRI.

4 Mounting

S = Ceiling mount
X = For use with cantilevers, pendant stems or cable hangers (order separately)

5 Finish

22 = Matte white
99 = Custom RAL or computer matched color to be specified, consult sales representative

6 Voltage/Ballast

Electronic

1 = 120V
2 = 277V
3 = 347V (Canada - 347V not for use with cable hangers)

Dimming*

- T = 120V
- V = 277V

* Consult sales representative for dimming 5” lamps (lamp codes T35, T80). Availability for wattages and voltages varies with ballast manufacturer and control type - see www.elliptipar.com for additional dimming specifications and limitations.

Note: When dimming X mount luminaries, order two (2) electrical feed cantilevers, stems, or cables for each single unit or row to accommodate the control circuit.

Max. Row Length per Feed (4’ lamps)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Lamp(s)</th>
<th>Stem(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120V</td>
<td>T5</td>
<td>120°</td>
</tr>
<tr>
<td>T5HO</td>
<td>120° (37.8mm)</td>
<td>76 (23.2mm)</td>
</tr>
<tr>
<td>277V</td>
<td>T5</td>
<td>120°</td>
</tr>
<tr>
<td>T5HO</td>
<td>120° (37.8mm)</td>
<td>76 (23.2mm)</td>
</tr>
</tbody>
</table>

Based on 16A branch circuit capacity (20A max allowed for #14 AWG thru wire). Based on 10A capacity of 18/4 cord.

7 Shielding

0 = Raising baffle, matte gray
L = Clear lens

8 Option (See Accessories Section for specifications)

0 = No option
E = Integral emergency battery pack with indicator lamp and test button. Available in 4’, 5’, 6’ and 8’ units (lamp codes T128, T135, T221, T228, T155, T239 and T255). Operates one lamp.
K = Prewired modular #12 AWG through wiring with quick connectors.
C = Combination of emergency battery pack and prewired modular through wiring as described above.
X = For modification not listed, include detailed description. Consult factory prior to specification.

9 Standard

0 = UL, Underwriters Laboratories
J = CSA, Canadian Standards Association

Example

F144 - T155 - X - 22 - 1 - 000

Xtra small enclosed semi-elliptical, one-way for use with 4’ F54T5/HO lamp, 48” long (excluding decorative end plates). For use with cantilever, pendant or cable hangers (order separately). Matte white. Integral 120V ballast. Raising baffles. UL. Order decorative end plates separately.

Accessories

Order separately. See Accessories Section for specifications.

Example

ADE44 - 0 - Decorative end plates

pair, matte white, or custom color to match housing

Note: adds 1/4” (6mm) to length

ABK = Blank-Out Cover for non-litghted module. Extruded cover replaces baffle, reflector and lamp(s). Painted to match housing. Consult factory for assistance.

The external shapes of the asymmetric reflectors are trademarks of elliptipar. Certain products illustrated may be covered by applicable patents and patents pending. For a list of patents, see Contents pages. These specifications supersede all prior publications and are subject to change without notice © 2007 elliptipar.
To order by Row Code

When the Style 144 xtra small enclosed T5 fluorescent is run continuously in a straight row, elliptipar offers the option of specifying and ordering the entire row as one catalog number. Ordering by row eliminates the need to calculate length, type and quantity of reflectors and end plates.

Steps to specify Row Code:
1. Determine lamp type and select corresponding lamp code (S=T5, V=T5HO).
2. Determine maximum available length for row and round up to nearest foot. Find nominal row length in chart (col. 1).
3. Determine what lengths/wattages of lamps will be used and select the corresponding lamp combination codes (col. 2).
4. If for a given nominal row length a preferred lamp combination is not listed, select the next shorter row that is available with the desired lamp combination.
5. Once the nominal row length and lamp combination has been found in the chart, note the actual overall row length (last column). Also consider if the quantity and lengths of the individual luminaires suit the installation.
6. Enter the four character Row Code in place of the Lamp Code described on page W-20.1. The remainder of the catalog number is formed as shown on page W-20.1.

3 Row Code

Note: Enter row code in place of Lamp Code described on page W-20.1.

- Row Code
 - Lamp Combination(s)*
 - A = All nominal 3' lamps
 - B = All nominal 4' lamps
 - D = Nominal 3' and 4' lamps
 - F = Nominal 3' and 5' lamps
 - G = Nominal 4' and 5' lamps
 - Nominal Row Length in feet, between 3' and 50'**
 - S = T5 fluorescent
 - V = T5 HO fluorescent

*Not all lamp combinations are available for each nominal row length (see chart)
**Nominal row lengths over 50' can be combined by shorter row lengths. (Example: a nominal 60' row can be ordered as two nominal 30' rows.)

Example

F144 - S36B - S - 22 - 2 - 000
Nominal 36' long row of Style 144 xtra small enclosed T5 fluorescent using only nominal 4' (28W) lamps. Row includes four nominal 8' reflectors for use with two 4' lamps, one nominal 4' reflector for use with one 4' lamp, one pair of decorative end plates and integral 27V electronic ballasts. Overall row length is 36' 0-1/4".
Your Specification:

<table>
<thead>
<tr>
<th>CATALOG NUMBER:</th>
<th>4941</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMPING: 4941-23</td>
<td>(2) 60W A-19/Med.</td>
</tr>
<tr>
<td>F (2) CFQ26W/G24q-3</td>
<td></td>
</tr>
<tr>
<td>4941-28</td>
<td>(4) 60W A-19/Med.</td>
</tr>
<tr>
<td>F (4) CFQ26W/G24q-3</td>
<td></td>
</tr>
<tr>
<td>VOLTAGE: 120V</td>
<td>120 Volt</td>
</tr>
<tr>
<td>277V</td>
<td>277 Volt</td>
</tr>
<tr>
<td>(Incandescent 120V only)</td>
<td></td>
</tr>
<tr>
<td>(Incandescent 120V only)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LENS OPTIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA Opal Acrylic (Etched)</td>
</tr>
<tr>
<td>FAH Hand Painted Faux Alabaster</td>
</tr>
<tr>
<td>FAH4 White Vein Hand Painted Faux Alabaster</td>
</tr>
<tr>
<td>FAH5 Antique Hand Painted Faux Alabaster (Beige)</td>
</tr>
<tr>
<td>FAH6 Gray Vein Hand Painted Faux Alabaster</td>
</tr>
<tr>
<td>FAH7 Beige Vein Hand Painted Faux Alabaster</td>
</tr>
<tr>
<td>FGH Faux Glass</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FINISHES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
</tr>
<tr>
<td>LBP Light Bronze Paint with Brushed Texture</td>
</tr>
<tr>
<td>And Brushed Brass Details</td>
</tr>
<tr>
<td>LSP Light Silver Paint with Polished Chrome Details</td>
</tr>
<tr>
<td>Custom</td>
</tr>
<tr>
<td>CPF Custom Painted Finish (Consult Factory)</td>
</tr>
<tr>
<td>CMF Custom Metal Finish (Consult Factory)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIAL:</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD Standard</td>
</tr>
<tr>
<td>MOD Modified Standard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEIGHT (lbs):</th>
</tr>
</thead>
<tbody>
<tr>
<td>4941-23</td>
</tr>
<tr>
<td>I 9LB</td>
</tr>
<tr>
<td>F 9LB</td>
</tr>
<tr>
<td>4941-28</td>
</tr>
<tr>
<td>I 11LB</td>
</tr>
<tr>
<td>F 11LB</td>
</tr>
</tbody>
</table>

NOTES:
- UL LISTED AND CUL APPROVED
- WINONA LIGHTING PRODUCTS ARE UNION MADE.
- CUSTOM SIZES AVAILABLE UPON REQUEST. ALL FLUORESCENT AND HID FIXTURES AVAILABLE IN 120 V AND 277 V.
- INCANDESCENT 120 V ONLY.
- WINONA LIGHTING RESERVES THE RIGHT TO MAKE DESIGN CHANGES WITHOUT PRIOR NOTICE.
- LAMPS NOT INCLUDED.
- BALLAST INFORMATION: MAGNETIC (F)
- BALLAST INFORMATION: ELECTRONIC (FT18W-FT55W, FQ, FX, FM)
- REFERENCE HID BALLAST SUBMITTAL FOR SPECIFYING BALLAST MOUNT.
Specifications

- **A** Deep-drawn aluminum canopy
- **B** Integral electronic ballast (remote for X mount pendant or cantilever)
- **C** Chrome cap nuts
- **D** Locking set screw
- **E** Aluminum yoke
- **F** Aluminum knobs
- **G** Snap-in polycarbonate cross baffle (matte gray), 15° shielding
- **H** Die-cast aluminum end plates
- **I** Aluminum reveal plates (black)
- **J** Specular extruded aluminum reflector
- **L** Twist and lock lampholder
- **M** Recessed outlet box (by others)
- **N** Mounting plate

Finish:
- Style 121 fluted - bright clear anodized aluminum housing. Painted end plates, yoke and canopy in choice of silver or semi-gloss black.
- Style 122 smooth - semi-gloss white housing, end plates, yoke and canopy.

Painted surfaces - 6 stage pretreatment and electrostatically applied thermoset powder coat for stable, long lasting and corrosion resistant finish.

Reflector - extruded high purity aluminum with clear anodized specular finish. All luminaire hardware - stainless steel. All mounting hardware - zinc or cadmium plated.

Mounting:
- Canopy mounts over recessed outlet box.
- Pendant or cantilever mounting assembly ordered separately; specify X mount. Supplied with remote ballast. For pendant or cantilever with integral ballast, see Styles 105/106.

Electrical:
- Use 90°C wire for supply connections.
- Integral HPF thermally protected electronic ballast with end-of-life protection for use with 4-pin lamp. Twist and lock lampholder allows for easy lamp installation and removal.
- X mount units (for use with pendant or cantilever) furnished with remote HPF thermally protected electronic ballast. Aluminum ballast enclosure includes four 7/8" diameter entries and a knockout for an accessory fuse. Maximum wire length between electronic ballast and fixture is 8' (2.4m) less length of pendant stem or cantilever arm.
- Optional electronic dimming ballast (E mount only); compatible dimmer switch required (by others). Consult sales representative for compatibility and specifications.
- Dimming not available with X mount pendant or cantilever.

Performance

Two parabolic reflector sections drive light to the bottom of the wall. An elliptical section shields the lamp from normal viewing angles and redirects its light to a parabola. Glare is minimized and asymmetry of the beam is maximized resulting in high beam efficiency and superior surface uniformity.

For complete photometrics, see www.elliptipar.com.
The external shapes of the asymmetric reflectors are trademarks of elliptipar.

Certain products illustrated may be covered by applicable patents and patents pending. For a list of patents, see Contents pages. These specifications supersede all prior publications and are subject to change without notice © 2007 elliptipar.

To Order

To form a Catalog Number

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Source

F = Quad tube compact fluorescent

2 Style

121 = Small fluted surface, integral ballast
122 = Small smooth surface, integral ballast

Note: Pendant or cantilever mounting furnished with remote ballast.

3 Lamp

<table>
<thead>
<tr>
<th>Lamp Code</th>
<th>Watt Number</th>
<th>Lamp Code</th>
<th>Watt Number</th>
<th>Volts</th>
<th>Ballast</th>
</tr>
</thead>
<tbody>
<tr>
<td>P126</td>
<td>26</td>
<td>CFQ26W/G24q</td>
<td>1, 2, 3</td>
<td></td>
<td>Electronic Dimming</td>
</tr>
</tbody>
</table>

For complete lamp and ballast information, see Accessories Section. Standard quad tube lamp color is 3000K / 80+ CRI.

*Dimming not available with X mount (pendant or cantilever)

4 Mounting

E = External yoke on canopy

X = External yoke for use with accessory pendant or cantilever mounting assembly (order separately)

Note: Furnished with remote ballast.

5 Finish

01 = Bright aluminum reflector with silver end plates, yoke and canopy

02 = Semi-gloss white reflector with semi-gloss black end plates, yoke and canopy

81 = Bright aluminum reflector with semi-gloss black end plates, yoke and canopy

99 = Custom RAL or computer matched color to be specified, consult sales representative

6 Voltage/Ballast

<table>
<thead>
<tr>
<th>Electronic</th>
<th>Dimming</th>
</tr>
</thead>
<tbody>
<tr>
<td>120V</td>
<td>T = 120V</td>
</tr>
<tr>
<td>277V</td>
<td>V = 277V</td>
</tr>
</tbody>
</table>
| 347V (Canada) | *X mount furnished with remote electronic ballast. Maximum wire length between remote electronic ballast and fixture is 8’ (2.4m) less length of pendant stem or cantilever arm.

*Dimming not available with X mount (pendant or cantilever) - consult factory for alternatives. Availability for wattages and voltages varies with ballast manufacturer and control type - see www.elliptipar.com for additional dimming specifications and limitations.

7 Option

(See Accessories Section for specifications)

0X = For modification not listed, include detailed description. Consult factory prior to specification.

8 Standard

0 = UL, Underwriters Laboratories

J = CSA, Canadian Standards Association

Example

F122 - P126 - E - 02 - 2 - 000

Small smooth surface model for use with 26W 4-pin quad tube compact fluorescent lamp. Mounted with external yoke on canopy. Semi-gloss white reflector, end plates, yoke and canopy. Integral 277V electronic ballast. UL.

Accessories

Order separately. See Accessories Section for specifications.

VCS 30 = Cantilever, 30” (760mm) setback

VP = Wallwash pendant

AFK000X = Ballast fuse kit

Cut Sheet #9

elliptipar

114 Boston Post Road, West Haven, Connecticut 06516, USA
Voice 203.931.4455 • Fax 203.931.4464 • www.elliptipar.com
Cut Sheet #10

Recessed R-8000

<table>
<thead>
<tr>
<th>series</th>
<th>lamp rows</th>
<th>shielding</th>
<th>reflector system</th>
<th>circuiting</th>
<th>voltage</th>
<th>ceiling system</th>
<th>options</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-8014S 1' x 4' shallow can</td>
<td>(1' x 4')</td>
<td>(1' x 4')</td>
<td>W' white</td>
<td>SC single circuit</td>
<td>120</td>
<td>X1* exposed T-bar</td>
<td>EML*</td>
</tr>
<tr>
<td>P-8014D 1' x 4' deep can</td>
<td>2T8</td>
<td>6PL (6-cell)</td>
<td></td>
<td></td>
<td></td>
<td>X3B hard ceiling</td>
<td>DM</td>
</tr>
<tr>
<td>P-8022S 2' x 2' shallow can</td>
<td>(2' x 2')</td>
<td>(2' x 2')</td>
<td>S specular</td>
<td>DC dual circuit</td>
<td>277</td>
<td>X6 slot grid</td>
<td>RSE 10THD</td>
</tr>
<tr>
<td>P-8022D 2' x 2' deep can</td>
<td>3T6, 2T8, 2T8U6, 2BX, w*</td>
<td>9PL (9-cell)</td>
<td>(deep can only)</td>
<td></td>
<td>347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-8024S 2' x 4' shallow can</td>
<td>(2' x 4')</td>
<td>(2' x 4')</td>
<td>*(standard)</td>
<td></td>
<td>120-277</td>
<td></td>
<td>X6 slot grid</td>
</tr>
<tr>
<td>P-8024D 2' x 4' deep can</td>
<td>2T8, 3T6</td>
<td>12PL (12-cell)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*see options to specify master-remote wiring</td>
<td>2T8, 3T6</td>
<td>16PL (18-cell)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32PL (32-cell)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications
Open or small offices, corridors, retail, healthcare, schools.

Features
Our classic 3"- or 4"-deep recessed semi-specular parabolic troffer. There are a wide variety of sizes, specular reflectors and special louver configurations available.

Construction
The body, available in 1' x 4', 2' x 2' and 2' x 4', is made of die-formed, 22-gauge steel. All fixtures are available in either a shallow or deep can.

Finish
The standard housing color is gloss white, (YGW) and the doorframe is matte black, (YBB) using polyester powder paint.

Electrical
T8 fixtures have instant-start electronic ballasts with less than 20% THD. Fixtures are U.L. Damp labeled (non-emergency) and I.B.E.W. manufactured. Maximum ballast size available: 2 3/8" width x 1 1/2" height.

Mounting
Fixture is to be recess-mounted into exposed T-bar, slot grid or hard ceiling application(s).

Options
- EML: emergency battery (T8=600-700 lumens; BX= 600-700 lumens); EMH: emergency battery (T8=1100-1400 lumens; BX=900-1100 lumens); DM: dimming (consult factory); RSE: rapid-start electronic; 10THD: ballast with < 10% total harmonic distortion; B: specific ballast, specify manufacturer and catalog number (consult factory); MR: master remote with 11' whip; FH: fixture fusing (slow blow).
photometric data

P-80245-3T8-18PL-W
Report #LS1533 $D=100.0% I=0.0%
Spacing Criteria: Along 1.1 Across 1.5
Lamp Lumens: 1400 Input Watts: 84

<table>
<thead>
<tr>
<th>Zone</th>
<th>% Lamp</th>
<th>% Luminaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-90</td>
<td>53.71</td>
<td>100.00</td>
</tr>
<tr>
<td>90-180</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angle</th>
<th>Coefficients of Utilization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>80</td>
</tr>
<tr>
<td>45°</td>
<td>70</td>
</tr>
<tr>
<td>90°</td>
<td>60</td>
</tr>
</tbody>
</table>

Luminance Summary (cd/ft²)

<table>
<thead>
<tr>
<th>Angle</th>
<th>Flood/Effective floor cavity reflectance = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>70</td>
</tr>
<tr>
<td>45°</td>
<td>50</td>
</tr>
<tr>
<td>90°</td>
<td>40</td>
</tr>
</tbody>
</table>

Zonal Lumen Summary

<table>
<thead>
<tr>
<th>Angle</th>
<th>Coefficients of Utilization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>80</td>
</tr>
<tr>
<td>45°</td>
<td>70</td>
</tr>
<tr>
<td>90°</td>
<td>60</td>
</tr>
</tbody>
</table>

Luminance Summary (cd/ft²)

<table>
<thead>
<tr>
<th>Angle</th>
<th>Floor/Effective floor cavity reflectance = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>70</td>
</tr>
<tr>
<td>45°</td>
<td>50</td>
</tr>
<tr>
<td>90°</td>
<td>40</td>
</tr>
</tbody>
</table>

Zonal Lumen Summary

<table>
<thead>
<tr>
<th>Angle</th>
<th>Coefficients of Utilization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>80</td>
</tr>
<tr>
<td>45°</td>
<td>70</td>
</tr>
<tr>
<td>90°</td>
<td>60</td>
</tr>
</tbody>
</table>

Luminance Summary (cd/ft²)

<table>
<thead>
<tr>
<th>Angle</th>
<th>Floor/Effective floor cavity reflectance = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>70</td>
</tr>
<tr>
<td>45°</td>
<td>50</td>
</tr>
<tr>
<td>90°</td>
<td>40</td>
</tr>
</tbody>
</table>

installation

Mounting Locations

* Mounting Hole
 7/8" Wiring K.O.
 J-Box Access

Ceiling Systems

Framing Dimensions X3B

<table>
<thead>
<tr>
<th>Min. size</th>
<th>Width</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1' x 4'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2' x 2'</td>
<td>24 1/4"</td>
<td>48 1/4"</td>
</tr>
<tr>
<td>2' x 4'</td>
<td>24 1/4"</td>
<td>48 1/4"</td>
</tr>
</tbody>
</table>

For rows add 1" in total fixture lengths

In an effort to continually provide the highest quality products, Prudential reserves the right to change design specifications and/or materials, without notice.
Features

- Unequaled low energy wall lighting from 2’ or 4’ T5 lamp
- Low profile semi-recessed design - evenly lights entire wall; conceals reflector aperture from normal view
- Adjustable - tailor performance to wall height and setback
- Compact - ceiling opening less than 6” wide
- Available for lay-in grid or non-accessible ceilings

Performance

Two parabolic reflector sections drive light to the bottom of the wall. An elliptical section shields the lamp from normal viewing angles and redirects its light to a parabola. Glare is minimized and asymmetry of the beam is maximized resulting in high beam efficiency and superior surface uniformity.

Specifications

- Splice access plate with (2) KO’s (connector and conduit by others)
- Integral electronic ballast
- Adjustable hanger clamps (grid ceiling)

Finish:

Semi-gloss white exterior and trim or bright clear anodized aluminum housing with semi-gloss black end plates and trim. Painted surfaces - 6 stage pretreatment and electrostatically applied thermoset polyester powder coating for stable, long lasting and corrosion resistant finish.

Reflector - extruded high purity aluminum with clear anodized specular finish. All hardware - stainless steel. Mounting brackets - cold rolled steel with corrosion resistance finish.

Electrical:

Use 90°C wire for supply connections. Splice access plate on top of back box includes two 7/8” diameter conduit entries. Integral electronic HPF thermally protected class P ballast with end-of-life protection. Optional master/satellite. Master supplied with 2-lamp ballast. Satellite supplied with 10’ (3m) leads (conduit by others).

Optional electronic dimming ballast; compatible dimmer switch required (by others). Consult sales representative for compatibility and specifications.

Optional emergency battery - switched supply is required.

Mounting:

L mount - compatible with most lay-in grid ceilings with T-bar supports 24” (610mm) or 48” (1219mm) on center. Finished trim on long sides supports cut ceiling tile or can rest atop or about grid. End hanger clamps with wing nuts for vertical adjustment. Supplemental wire or chain supports (by others) may be required by local codes (weight approx. 10 lbs/4.5 kg). Units can be mounted end-to-end in adjacent tiles.

T mount - installs from below non-accessible ceiling. Bracket wings spring outward in plenum and cinch down to ceiling with screws accessible from below. Suitable for ceilings up to 1-1/2” (38mm) thick.

Standard:

UL listed or CSA certified.

REV. 7/07
To Order

To form a Catalog Number

<table>
<thead>
<tr>
<th>F</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>-</th>
<th>T</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>

1. **Source**
 - **F** = Linear fluorescent

2. **Style**
 - 210 = Small semi-recessed, adjustable, integral ballast

3. **Lamp**
 - **T obsessive** = Lamp Code
 - **Lamp Wattage** (see chart below)
 - **Reflector Configuration**, specify 1 or 3 (see chart below)

 Example: T328 = two nominal 4’ reflectors, each for use with one 28W T5 lamp; master/satellite ballast combination

4. **Mounting**
 - **L** = Lay-in grid ceiling (for T-bars 24” or 48” on center)
 - **T** = Overlapping trim for non-accessible ceilings

5. **Finish**
 - 02 = Semi-gloss white
 - 81 = Bright clear anodized reflector with semi-gloss black end plates and trim

6. **Voltage/Ballast**
 - **Electronic**
 - **1** = 120V
 - **2** = 277V
 - **3** = 347V (Canada)
 - **Dimming* (see chart below)
 - **1** = 120V
 - **2** = 277V
 - **3** = 347V (Canada)

 * Consult factory for dimming for Reflector Configuration 3.

7. **Option** (See Accessories Section for specifications)
 - 00 = No options
 - 0C = Modified to comply with Chicago plenum code.
 - 0B = Snap-in parabolic cross baffle, specular finish, provides 35” lengthwise shielding
 - 0E = Emergency battery pack with indicator lamp and test button. Integral for 48” units (lamp codes: T128, T328, T155 and T355). Remote for 24” units (lamp codes: T114, T314, T124 and T324). Operates one lamp only for master/satellite Configuration 3.
 - **Note**: Requires unswitched feed to battery (by others).
 - **BE** = Combination of parabolic cross baffle and emergency battery pack
 - 0Y = Modified to comply with New York City code
 - XX = For modification not listed, include detailed description. Consult factory prior to specification.

8. **Standard**
 - 0 = UL, Underwriters Laboratories
 - J = CSA, Canadian Standards Association

Example

F210 - T128 - L - 02 - 1 - 000

Small semi-recessed model for use with 28W T5 lamp in 4’ reflector. For use in lay-in grid ceilings with T-bars spaced at 48’ on center. Semi-gloss white. Integral 120V electronic ballast. UL.

The external shapes of the asymmetric reflectors are trademarks of elliptipar. Certain products illustrated may be covered by applicable patents and patents pending. For a list of patents, see Contents pages. These specifications supersede all prior publications and are subject to change without notice. © 2007 elliptipar.
Specifications

- **A** 1/4" aluminum canopy
- **B** 1/16" dia. 7x7 cable
- **C** Adjustable cable glider
- **D** Leveling bracket (cable)
- **E** Extruded aluminum housing
- **F** Specular extruded aluminum reflector
- **G** Electronic ballast
- **H** Recessed outlet box w/ plaster ring (by others)
- **I** Tubular steel arm
- **K** Formed aluminum fitting
- **L** Aluminum decorative end plates (order separately)
- **M** Aluminum anchor plate
- **N** Aluminum cover plate
- **O** Aluminum canopy
- **P** Tubular aluminum stem
- **Q** 18/3 cord with clips
- **R** Aluminum joiner/reveal plates (black)
- **S** Steel wall and leveling plates (under canopy)

Finish:
- Semi-gloss white housing. Black joiner/reveal plates.
- Painted surfaces - 6 stage pretreatment and electrostatically applied thermostet powder coat for stable, long lasting and corrosion resistant finish.
- Reflector - extruded high purity aluminum with clear anodized specular finish. All luminaire hardware - stainless steel.

Mounting:
- Cables, pendants or cantilevers hangers ordered separately.
- For single unit, specify starter/individual module (X mount).
- For continuous row, add intermediate/end modules (Y mount).
- Jointer/reveal plates align and bolt together.
- Pendant stem - 1/16" O.D. aluminum, internally threaded, 5" dia. aluminum canopy. For swivel - consult factory.
- Cable - 1/16" dia. 7x7 aircraft cable, field adjustable length.
- Crossbar w/ 1/4-20 stud, coupling with slipring, 5" dia. canopy.
- Cantilever - 11/16" O.D. steel arm; suitable support structure required. Choice of: Rectangular canopy with adjustable interface plate allows leveling of arms +/- 5", or Oval wall plates with adjustable cable tieback.

Electrical:
- Prewired with modular through wiring with quick connectors.
- X mount - starter/individual module furnished with 18/3 cord for connection to supply at recessed outlet box (by others). Cord is clipped alongside cable or managed through cantilever arm or pendant stem. Note: cantilever with tieback requires recessed plastic ring (Raco #727 or equail by others).
- Y mount - intermediate/adjunct module plugs into adjacent unit.
- Integral electronic HPF thermally protected class P ballast with end-of-life protection. Remove reflector to service ballast.
- Optional electronic dimming ballast; compatible dimmer switch required (by others). Consult sales representative for compatibility and specifications.
- Optional integral emergency battery operates one lamp. Separate unswitched supply is required. Note: first battery pack in row must be located in starter module (X mount).

Features

- Small classic form - full oval end plates; articulated reveals
- Powerful T5/T5HO fluorescent wall lighting - low energy
- Unequaled uniformity from minimal set back - ideal for conference rooms, markerboards, art walls, displays, signs
- Versatile - cable, pendant or two styles of cantilevers
- Integral electronic ballast - modular quick connect wiring

Performance

Two parabolic reflector sections drive light to the bottom of the wall. An elliptical section shields the lamp from normal viewing angles and redirects its light to a parabola. Glare is minimized and asymmetry of the beam is maximized resulting in high beam efficiency and superior surface uniformity.

For complete photometrics, see www.elliptipar.com.

U.S. Patent 6,860,618 and other patents pending
To Order

1 Source
F = Linear fluorescent

2 Style
140 = Xtra small enclosed oval, integral ballast

3 Lamp
T = T5 Fluorescent Lamp Code

Lamp Wattage (see chart below)
Number of Lamps in Length, specify 1 or 2

Example: T155 = 4’ (1.2m) housing with one 54W T5HO lamp

4 Mounting
X = Starter/individual module with electrical feed (18/3 cord)
Y = Intermediate/end module with modular through wiring with quick connectors

Note: Order cable, pendant, or cantilever hangers separately.

5 Finish
02 = Semi-gloss white
99 = Custom RAL or computer matched color to be specified, consult sales representative

6 Voltage/Ballast
Electronic
1 = 120V
T = 120V
2 = 277V
V = 277V

Dimming*
3 = 347V (Canada)

Note: Not available for use with cable hangers.

* Consult sales representative for dimming 5 lamps (lamp codes T135, T180).

Accessories

Hangers

Order separately. See Accessories Section for specifications.

Cable supports
Order one non-electrical and one electrical feed cable support for each starter/individual module (X mount). Order one non-electrical cable support for each additional intermediate/end module (Y mount) in a row.

Note: For dimming (voltages/ballast code T or V), an additional electrical feed cable support may be required depending on ballast manufacturer and control type - consult factory.

Pendant and Cantilevers
Order one hanger for each module (X or Y mount) plus one hanger for the end of each row. At location with outlet box, prewired cord on starter/individual module (X mount) is managed through stem or arm.

Electrical feed can be located at ends or intermediate joints.

7 Option (See Accessories Section for specifications)

00 = No option
0E = Integral emergency battery pack with indicator lamp and test button. Operates one lamp. Available in 4', 5', 6' and 8' lengths (lamp codes T128, T135, T221, T228, T155, T239 and T255).

Note: For rows, 0E option must be specified for the starter/individual module (X mount). Additional battery packs may be specified on intermediate/end modules.

XX = For modification not listed, include detailed description. Consult factory prior to specification.

8 Standard
0 = UL Underwriters Laboratories
J = CSA, Canadian Standards Association

Example
F140 - T155 - X - 02 - 2 - 000

Xtra small enclosed oval series for use with one 4’ F54T5HO lamp, 48” long housing (not including decorative end plates). For use with cable, pendant or cantilever hangers (order separately). Semi-gloss white. Integral 277V ballast. UL.

Order decorative end plates and hangers separately.

Accessories

Order separately. See Accessories Section for specifications.

ADE40 = Decorative end plates, pair, white, or custom color to match housing

Note: adds 3/8” (10mm) to length

More information can be found at www.elliptipar.com
Glow Series

<table>
<thead>
<tr>
<th>(1) Body Style</th>
<th>Color/Finish</th>
<th>Lamp Rows</th>
<th>Nominal Length</th>
<th>(2) Cast Plate/Mounting Finish</th>
<th>(3) Flat Endplate Finish</th>
<th>(2) Mounting Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAL-AP-GLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STR solid translucent</td>
<td>BFA blue frost acrylic</td>
<td>1BX24w</td>
<td>01' OR</td>
<td>TMW textured matte white</td>
<td>ADJ adjustable mounting bracket</td>
<td>EML, EMH, DM, RSE**, 10THD**</td>
</tr>
<tr>
<td></td>
<td>WFA white frost acrylic</td>
<td>1T8</td>
<td>02' OR</td>
<td>YPE pewter</td>
<td>FMB fixed flush mount bracket</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y_ premium color</td>
<td>1T5</td>
<td>03'</td>
<td>YBB black</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC custom color</td>
<td>1T5HO</td>
<td>04'</td>
<td>Y_ premium color</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GLV galvanized</td>
<td></td>
<td></td>
<td>CC custom color</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR copper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPS specular stainless steel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*LP and VSL body styles only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Throw Series

<table>
<thead>
<tr>
<th>(1) Body Style</th>
<th>Color/Finish</th>
<th>Lamp Rows</th>
<th>Nominal Length</th>
<th>(2) Cast Plate/Mounting Finish</th>
<th>(3) Flat Endplate Finish</th>
<th>(2) Mounting Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAL-AP-TRO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD solid</td>
<td>BFA* blue frost acrylic</td>
<td>1T8</td>
<td>02'</td>
<td>TMW textured matte white</td>
<td>ADJ adjustable mounting bracket</td>
<td>EML, EMH, DM, RSE**, 10THD**</td>
</tr>
<tr>
<td></td>
<td>WFA* white frost acrylic</td>
<td>1T5</td>
<td>03'</td>
<td>YPE pewter</td>
<td>FMB fixed flush mount bracket</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TMW textured matte white</td>
<td>1T5HO</td>
<td>04'</td>
<td>YBB black</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y_ premium color</td>
<td></td>
<td></td>
<td>Y_ premium color</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC custom color</td>
<td></td>
<td></td>
<td>CC custom color</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GLV galvanized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR copper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAL brushed aluminum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SSS stainless steel squares</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SSW stainless steel weaves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALL aluminum lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* fascia not illuminated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Features A versatile wall-mounted lighting system with an array of finish options. In the Glow (GLO) body style, light filters through punched metal or translucent acrylic giving the fixture a bold presence on the wall. In the Throw (TRO) body style, a high-performance forward throw reflector system evenly lights the ceiling. Mounting brackets can be fixed at any point along the extruded rail to adapt to field conditions.

Construction Fixture structure is extruded aluminum. Cast end plates are cast aluminum. Flat end plates are 20-gauge painted, stainless or galvanized steel, copper, or brushed aluminum. GLO fixture body is translucent frosted extruded acrylic, or punched 20-gauge painted, stainless or galvanized steel, copper, or brushed aluminum. TRO fixture body is frosted extruded acrylic with inner opaque reflector, 20-gauge painted steel, brushed or patterned aluminum, copper, galvanized or textured stainless steel.

Finish Steel fascia panels, extruded aluminum rail, cast aluminum endplates and flat endplates are finished in polyester powder paint. For flat endplates and fascia panels, refer to ordering matrix for optional metal finishes or refer to Defining Section for optional paint colors.

Electrical All ballasts are 120-277 voltage; T8 ballasts are instant start with less than 20% THD; T5 and T5HO ballasts are programmed start with less than 10% THD unless specified otherwise. Fixtures are UL Damp labeled (non-emergency) and IBEW manufactured. Maximum ballast size available: 1-5/8” width by 1-1/4” height.

Mounting Fixture is mounted to wall with either fixed flush mounting or adjustable bracket. Adjustable brackets are fully field adjustable to 180 degrees, and are locked securely in place with three set screws. Brackets can be fixed at any point along the longitudinal axis of the fixture. Cast wall plate can be mounted to single gang junction box or secured to wall with mechanical fasteners.

Options EML: emergency battery - low profile only (T8=600-700 lumens, T5/HO=600-700 lumens); EMH: emergency battery - low profile only (T8=1100-1400 lumens, T5/HO=1100-1400 lumens); DM: dimming (consult factory); RSE: rapid-start electronic (T8 only); 10THD: ballast with <10% total harmonic distortion. B₂ specific ballast, specify manufacturer and catalog number (consult factory).

photometric data

WAL-AP-GLO-BFA-1T8-04

<table>
<thead>
<tr>
<th>Report #</th>
<th>LL1052026</th>
<th>D-535% I-64%</th>
<th>Lamp Lumens: 1950</th>
<th>Input Watts: 92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonal Lumen Summary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone</td>
<td>% Lamp</td>
<td>% Luminare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-90</td>
<td>21.5</td>
<td>35.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90-180</td>
<td>39.1</td>
<td>64.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Efficiency | 60.7% |

<table>
<thead>
<tr>
<th>Luminance Summary (cd/m²)</th>
<th>Angle</th>
<th>0°</th>
<th>45°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1113</td>
<td>1234</td>
<td>1277</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>919</td>
<td>1073</td>
<td>1234</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>736</td>
<td>932</td>
<td>1136</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>543</td>
<td>1049</td>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>328</td>
<td>1326</td>
<td>1251</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficients of Utilization (%)</th>
<th>Floor Ceiling Wall</th>
<th>0</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCR 0</td>
<td>63 63 63 63</td>
<td>57 57 67 57</td>
<td>46 46 46 46</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>56 53 51 48</td>
<td>51 48 46 44</td>
<td>39 37 36 34</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>51 46 42 39</td>
<td>46 42 38 35</td>
<td>33 31 29 27</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>46 40 36 32</td>
<td>42 36 32 29</td>
<td>26 24 22 20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>42 35 30 27</td>
<td>38 32 28 24</td>
<td>22 20 18 16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>39 31 26 23</td>
<td>35 28 24 21</td>
<td>19 17 15 13</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>35 28 23 19</td>
<td>32 25 21 18</td>
<td>17 15 13 11</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>33 25 20 17</td>
<td>29 23 18 15</td>
<td>15 13 11 09</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>30 23 18 15</td>
<td>27 21 16 13</td>
<td>13 11 09 07</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>28 21 16 13</td>
<td>25 19 15 12</td>
<td>12 10 08 06</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>26 19 14 11</td>
<td>23 17 13 10</td>
<td>11 09 07 05</td>
<td></td>
</tr>
</tbody>
</table>

WAL-AP-GLO-BFA-1T8-04

<table>
<thead>
<tr>
<th>Report #</th>
<th>LL10584</th>
<th>D-100% I-10.0%</th>
<th>Lamp Lumens: 4500</th>
<th>Input Watts: 47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonal Lumen Summary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone</td>
<td>% Lamp</td>
<td>% Luminare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-90</td>
<td>0.0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90-180</td>
<td>71.4</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Efficiency | 71.4% |

<table>
<thead>
<tr>
<th>Luminance Summary (cd/m²)</th>
<th>Angle</th>
<th>0°</th>
<th>45°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1113</td>
<td>1234</td>
<td>1277</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>919</td>
<td>1073</td>
<td>1234</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>736</td>
<td>932</td>
<td>1136</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>543</td>
<td>1049</td>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>328</td>
<td>1326</td>
<td>1251</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficients of Utilization (%)</th>
<th>Floor Ceiling Wall</th>
<th>0</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCR 0</td>
<td>68 68 68 68</td>
<td>58 58 58 58</td>
<td>40 40 40</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>62 59 57 54</td>
<td>53 51 49 47</td>
<td>35 33 32</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>56 52 48 44</td>
<td>48 44 41 38</td>
<td>30 28 27</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>51 45 40 37</td>
<td>44 39 35 32</td>
<td>27 24 22</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>47 40 35 31</td>
<td>40 34 30 27</td>
<td>23 21 19</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>43 35 30 26</td>
<td>36 30 26 23</td>
<td>21 18 16</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>39 31 26 22</td>
<td>33 27 23 19</td>
<td>19 16 14</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>35 28 23 19</td>
<td>29 24 21 17</td>
<td>17 14 12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>31 25 20 17</td>
<td>27 22 18 15</td>
<td>15 12 10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>27 21 18 15</td>
<td>26 20 16 13</td>
<td>13 11 09</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>23 19 16 13</td>
<td>24 18 14 12</td>
<td>11 10 08</td>
<td></td>
</tr>
</tbody>
</table>

WAL-AP-TRO-SD-1T5HO-04

Prulite Lighting

1737 E. 22nd St., Los Angeles, CA 90058 phone 213.746.0360 fax 213.741.8590 www.prulite.com
installation

Adjoining Detail

Note: When connecting two or more fixtures in a row, mounting assemblies are required on both ends of the first fixture, with only one mounting assembly required on each additional fixture.

small office application

15' x 20' x 9' small office layout

Reflectances used: 80/50/20
Average Illuminance/Horizonal Grid 30° A.F.F.
Ceiling Uniformity/Horizonal Grid Ceiling Surface e

2-20' Rows on 15' Centers – WAL-AP-TRO-SD-1T8

<table>
<thead>
<tr>
<th>Overall Suspension ceiling to center of lamp</th>
<th>Average Illuminance maintained (LLF = 85) (30° A.F.F.)</th>
<th>Ceiling Uniformity between fixtures</th>
<th>Watts/Square Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>24"</td>
<td>24.8 FC</td>
<td>6.1 : 1</td>
<td>1.07</td>
</tr>
</tbody>
</table>

20’ Continuous Row – WAL-AP-TRO-SD-1T8

<table>
<thead>
<tr>
<th>Overall Suspension ceiling to center of lamp</th>
<th>Average Illuminance maintained (LLF = 85) (6° A.F.F.)</th>
<th>Max : Min (6° A.F.F.)</th>
<th>Watts/Square Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>24"</td>
<td>14.1 FC</td>
<td>7.4 : 1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

In an effort to continually provide the highest quality products, Prudential reserves the right to change design specifications and/or materials, without notice.
open work space
15’ x 20’ x 12’ work space layout

Reflectance used: 80/80/80

Average Illuminance/Horizontal Grid (50° A.F.F.)

Ceiling Existence Grid

20’ Continuous Row – WAL-AP-TRO-SD-1T5HO

<table>
<thead>
<tr>
<th>Overall Suspension</th>
<th>Average Illuminance maintained (LLF - 85°)</th>
<th>Max: Min between fixtures (50° A.F.F.)</th>
<th>Watts/Square Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0’</td>
<td>18.1 FC</td>
<td>2.4:1</td>
<td>.96</td>
</tr>
</tbody>
</table>
ordering

<table>
<thead>
<tr>
<th>series</th>
<th>lamp rows</th>
<th>nominal length</th>
<th>shielding</th>
<th>color/finish</th>
<th>distribution</th>
<th>circuiting</th>
<th>voltage</th>
<th>mounting</th>
<th>options</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAL-6</td>
<td>1T8 2T8</td>
<td>02’ 03’ 04’ 06’ 08’ R__’</td>
<td>NS__ no shielding PRA prismatic acrylic lens SPL silver parabolic louver</td>
<td>TMW textured matte white YGW gloss white Y__ premium color CC custom color GLV galvanized</td>
<td>D1 direct D2 indirect D3 direct/indirect (44/56) D9 semi-direct (85/15)</td>
<td>SC single circuit DC dual circuit (in-line) T8 only</td>
<td>120 277 347 120-277</td>
<td>WM direct to wall</td>
<td>EML__ EMH__ DM RSE 10THD B__ FH QC ADC C2’</td>
</tr>
</tbody>
</table>

Applications Stairwells, lobbies, hallways, classrooms, small offices, retail.

Features A versatile direct, indirect, direct/indirect or semi-direct wall mounted luminaire designed to complement the cable- or pendant-mounted Pru-5. The aluminum, semi-specular parabolic louver is 1 1/2” high and 2 3/8” on center and provides a 34° longitudinal shielding.

Construction The standard housing, available in 2-, 3-, 4-, 6- or 8-foot standard lengths, and finish plates are made of 20-gauge steel. The louver material is semi-specular, low iridescent aluminum.

Finish The standard exterior body color is textured matte white (TMW) or optional gloss white (YGW) using polyester powder paint. Refer to ordering matrix for optional metal finishes or refer to Defining Section for optional paint colors.

Electrical T8 fixtures have instant-start electronic ballasts with less than 20% THD. Fixtures are U.L. Damp labeled (non-emergency) and I.B.E.W. manufactured. Maximum ballast size available: 2 3/8” width x 1 1/2” height.

Mounting Fixture is to be mounted directly to wall.

Options EML: emergency battery (T8=600-700 lumens); EMH: emergency battery (T8=1100-1400 lumens); DM: dimming (consult factory); RSE: rapid-start electronic; 10THD: ballast with < 10% total harmonic distortion; B: specific ballast, specify manufacturer and catalog number (consult factory); FH: fixture fusing (slow blow); QC: quick-connec circuit assemblies; ADC: acrylic dust cover; C2: 90° mitered corner.
photometric data

WAL-6-T8/04-SPL-TMW-D3

Candlepower Summary

<table>
<thead>
<tr>
<th>Vertical Angle</th>
<th>Horizontal Angle</th>
<th>Output Lumens</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>22.5°</td>
<td>778</td>
</tr>
<tr>
<td>5°</td>
<td>45°</td>
<td>778</td>
</tr>
<tr>
<td>10°</td>
<td>67.5°</td>
<td>778</td>
</tr>
<tr>
<td>15°</td>
<td>90°</td>
<td>778</td>
</tr>
<tr>
<td>20°</td>
<td>110°</td>
<td>778</td>
</tr>
<tr>
<td>25°</td>
<td>135°</td>
<td>778</td>
</tr>
<tr>
<td>30°</td>
<td>160°</td>
<td>778</td>
</tr>
<tr>
<td>35°</td>
<td>180°</td>
<td>778</td>
</tr>
<tr>
<td>40°</td>
<td>200°</td>
<td>778</td>
</tr>
<tr>
<td>45°</td>
<td>220°</td>
<td>778</td>
</tr>
<tr>
<td>50°</td>
<td>250°</td>
<td>778</td>
</tr>
<tr>
<td>55°</td>
<td>280°</td>
<td>778</td>
</tr>
<tr>
<td>60°</td>
<td>310°</td>
<td>778</td>
</tr>
<tr>
<td>65°</td>
<td>340°</td>
<td>778</td>
</tr>
<tr>
<td>70°</td>
<td>370°</td>
<td>778</td>
</tr>
<tr>
<td>75°</td>
<td>400°</td>
<td>778</td>
</tr>
<tr>
<td>80°</td>
<td>430°</td>
<td>778</td>
</tr>
<tr>
<td>85°</td>
<td>460°</td>
<td>778</td>
</tr>
<tr>
<td>90°</td>
<td>490°</td>
<td>778</td>
</tr>
</tbody>
</table>

Zonal Lumen Summary

<table>
<thead>
<tr>
<th>Zone</th>
<th>% Lamp</th>
<th>Luminaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-90</td>
<td>36.39</td>
<td>43.73</td>
</tr>
<tr>
<td>90-180</td>
<td>46.96</td>
<td>56.27</td>
</tr>
</tbody>
</table>

Efficiency = 85.4%

Lumiance Summary (cd/m²)

<table>
<thead>
<tr>
<th>Angle</th>
<th>0°</th>
<th>45°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>3614</td>
<td>6662</td>
<td>8036</td>
</tr>
<tr>
<td>55</td>
<td>2486</td>
<td>5464</td>
<td>6164</td>
</tr>
<tr>
<td>65</td>
<td>798</td>
<td>1829</td>
<td>2599</td>
</tr>
<tr>
<td>75</td>
<td>228</td>
<td>422</td>
<td>920</td>
</tr>
<tr>
<td>85</td>
<td>0</td>
<td>54</td>
<td>255</td>
</tr>
</tbody>
</table>

small office application

10' x 12' x 9' small office layout

Reflectances used: 80%/20%

Average Illuminance/Horizontal Grid (o° A.F.F.)

Ceiling Uniformity: Horizontal Grid Ceiling Surface e°

2-8' Rows on 10' Centers – WAL-6-T8-SPL-TMW-D3

Overall Suspension ceiling to center of lamp

Average Illuminance maintained (LLF = 70)

Ceiling Uniformity between fixtures

Watts/ Square Foot

20' Single Fixture – WAL-6-T8/04-SPL-TMW-D3

Overall Suspension ceiling to center of lamp

Average Illuminance maintained (LLF = 70)

Max : Min

Watts/ Square Foot

installation

Adjoining Detail

Connectors (cz)

Mounting Locations

In an effort to continually provide the highest quality products, Prudential reserves the right to change design specifications and/or materials, without notice.
Solatube 21-0 Open Ceiling (21 in/530 mm Daylighting System)

Project:
Location:
Type:

To Order (Note: Product Specifications Appear in CSI Division 08, Section 08625)

<table>
<thead>
<tr>
<th>1</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>S210 = SolaMaster® Series Solatube 21-0 (21 in/530 mm Daylighting System)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Dome</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA = Dome Acrylic</td>
<td></td>
</tr>
<tr>
<td>DP = Dome Polycarbonate (High Velocity Wind Zones Only)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Flashings</th>
</tr>
</thead>
<tbody>
<tr>
<td>F04 = 4-inch Self Mounted</td>
<td></td>
</tr>
<tr>
<td>F08 = 8-inch Self Mounted</td>
<td></td>
</tr>
<tr>
<td>F11 = 11-inch Self Mounted</td>
<td></td>
</tr>
<tr>
<td>FCM = Curb Mounted Flashing (Curb By Others)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Extension Tubes Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run measured from top of roof deck to bottom of ceiling plane along centerline of tubing.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Diffuser Lens</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 = Prismatic Diffuser</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS = Secondary Diffuser</td>
<td></td>
</tr>
<tr>
<td>B = Security Bar</td>
<td></td>
</tr>
<tr>
<td>SK = Dome Security Kit</td>
<td></td>
</tr>
<tr>
<td>E = Wire Suspension Kit</td>
<td></td>
</tr>
<tr>
<td>P = PVC Boot (Verify Availability, Special Order - Requires 60-day Lead Time and order of 100 or more)</td>
<td></td>
</tr>
<tr>
<td>T12 = Roof Flashing Turret Extension 12 in/300 mm</td>
<td></td>
</tr>
<tr>
<td>T24 = Roof Flashing Turret Extension 24 in/600 mm</td>
<td></td>
</tr>
<tr>
<td>T36 = Roof Flashing Turret Extension 36 in/900 mm</td>
<td></td>
</tr>
<tr>
<td>T48 = Roof Flashing Turret Extension 48 in/1200 mm</td>
<td></td>
</tr>
<tr>
<td>R = Trim Ring</td>
<td></td>
</tr>
<tr>
<td>FI = Flashing Insulator</td>
<td></td>
</tr>
<tr>
<td>PB = Dome Edge Protection Band</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Measurement Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = Metric</td>
<td></td>
</tr>
<tr>
<td>I = Imperial</td>
<td></td>
</tr>
</tbody>
</table>

Example

S210-DA-F08-E00-L2-B-I

SolaMaster® Series 21-0 (21 in/530 mm Daylighting System), Acrylic Dome, 8-inch high Self Mounted Flashing, Base Kit, Prismatic Diffuser, and Security Bar. For non-metric installations.
Lighting the Task

Model: Solatube 21-O Open Ceiling (21 in/530 mm Daylighting System)

Daylighting System for use with open ceiling applications.

Specifications

1. **Dome is UV and impact resistant** for extended service life. Its low profile design is unobtrusive. Impact modified, acrylic. Classified as CC2 material, .143” thick, with visible light transmission of 92% and ultra violet light transmission of .03%. (Optional polycarbonate domes available.)

2. **LightTracker™ Reflector** increases daylight collection and harvesting for low sun angles, resulting in increased light output. Spectralight® Infinity. For specifications see # 6 below.

3. **Permeable Dome Seal** locks out dust and bugs, but allows moisture to escape. Black breathable weatherstrip material with .40” pile.

4. **Dome Ring and Dome Seal** to channel condensed moisture out of the system. Durable white PVC, injection molded non-corrosive material.

5. **One-Piece Seamless Flashing**, 4”, 8”- and 11”- high (100 mm/200 mm/280 mm) ensures a no-leak installation. 0.028 inches thick aluminized steel with powder coated exterior.

6. **The 30-degree Angle Adaptors** feature 30-degree elbows for easy installations. The diameter tubes fit between 24” (600 mm) on center framing. Angle adapters utilize Spectralight® Infinity for a reflective surface.

Spectralight® Infinity material, fabricated from aluminum sheet meeting ASTM B 209 requirements, alloy and temper required by the manufacturer to suit forming operations and finish requirements. 0.018” thick.

 Interior Finish: Spectralight Infinity high reflectance specular finish on exposed reflective surface; Visible spectrum (400 nm to 760 nm) greater than 99%; Total solar spectrum (400 nm to 2500 nm) less than 93%.

 Color: *a* and *b* (defined by CE L*a*b color model) shall not exceed plus 2 or be less than minus 2 as determined in accordance to ASTM E 308.

7. **Extension Tubes** are 24 in/600 mm in length, for installations up to 50 ft/15 m. Spectralight® Infinity.

8. **Spectralight® Infinity Extension Tubes** are 24 in/600 mm in length, for installations up to 40 ft/20 m or more. Specifications are same as above.

9. **Domed Prismatic Diffuser Panel** clips onto the bottom of the optical tubing and compliments traditional high-bay light fixtures. UV and weather resistant diffuser seal provides an effective dust and bug seal.

Features

- **UV and Impact Resistant Dome** for extended service life.
- **Seamless Flashings** are fabricated as a single, seamless piece to ensure leakproof performance available in both self flashing and curb mounted.
- **Small 23” Diameter Roof-top Penetration** fits between normal structural framing.
- **Compact Size** allows layout control so light can be placed and focused between racking aisles.
- **Spectralight Infinity** super-reflective tubing provides maximum light transfer.
- **Easily Reconfigured** to accommodate future interior layout changes.
- **Prismatic Diffuser** technology provides cost-effective diffuse light into the workspace.

Performance

Relative Lumen Output

- 13,900 Average Lumens
- Up to 20,800 Maximum Lumens

Solatube relative light output based upon 30” tube run for Solatube 21-0 products. Maximum and average values achieved over the peak 2,400 annual daylight hours for San Diego California TMV2 Weather Data.

For IBS Photometry and Detailed Lumen Output Data Tables, visit www.solatube.com/com_tech_resource_center.php
1 August 2008

Mr. Randy Stauffer
Chair Interior Architecture
Woodbury University
7500 Glencarlyn Blvd
Burbank, CA 91510

Subject: Woodbury University Design Center and Kirby Hall
Acoustical Study

Dear Randy,

Further to our recent site visits, our comments are as follows. The purpose of the visits was to evaluate airborne sound isolation between the Computer Labs and Main Gallery, and airborne and impact sound transmission between classrooms and second floor studio spaces in the Design Center Building. Noise in classrooms due to the air exhaust system was also evaluated. In addition speech transfer between studios and noise build-up in Kirby Hall were reviewed. This letter presents our findings.

The recommendations in this report are conceptual and address acoustical requirements. All non-acoustical requirements such as Code requirements, ADA considerations, fire department requirements, and aesthetic requirements must be addressed by others in the detailed design stage/implementation stage of this project.

Sound Measurements

The following equipment was used to perform the measurements:

- B & K 2260 Investigator Precision Sound Analyzer
- Ivie IE-20B Noise Generator
- Samson Amplifier/loudspeaker
- Norwegian Electronics 211R Tapping Machine

Airborne Sound Transmission Measurements

The airborne sound transmission tests measured noise reduction, which is defined as the difference between the average sound level in a ‘source’ room that contains an electronic noise generator and loudspeaker system, and the average sound level in a ‘receive’ room that is located on the opposite side of the barrier under test. A single number rating, the noise isolation class (NIC) is assigned to the noise reduction test results in accordance with the applicable test standard.

Measurements of airborne sound transmission were conducted between the ground floor ‘gallery’ space and Computer Lab D201 on the second floor; between ground floor Classrooms 101, 102 and 103; and between Classroom 103 and the studio space immediately above.

For the initial test, the noise source was located in the Gallery and D201 served as receive space. During the second test sequence, the noise source was located in Classroom 102, and Classrooms 101 & 103 served as the receive spaces. During the final test, the noise source was located in Classroom 103, and the receive space was the studio space directly above.

The results of the tests are summarized in the table below and are shown in detail on the attached Figures NIC1, NIC2, NIC3 and NIC4.
<table>
<thead>
<tr>
<th>Source Space</th>
<th>Receive Space</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallery</td>
<td>Computer Lab D201</td>
<td>NIC 33</td>
</tr>
<tr>
<td>Classroom 102</td>
<td>Classroom 101</td>
<td>NIC 25</td>
</tr>
<tr>
<td>Classroom 102</td>
<td>Classroom 103</td>
<td>NIC 23</td>
</tr>
<tr>
<td>Classroom 103</td>
<td>Studio Directly Above</td>
<td>NIC 37</td>
</tr>
</tbody>
</table>

Impact Sound Transmission Measurements

The impact sound transmission test consisted of operating an ISO 'standard' tapping machine on the floor in the second floor studio space at multiple orientations as specified in the defining ASTM test standard, and measuring the resulting average sound pressure levels throughout Classroom 103 immediately below. The test results are reported both 'normalized' to a standard amount of sound absorption in the receive space, as required by the ASTM standard, and un-normalized (as-measured) as is typically reported when the testing is conducted in a finished occupied space. The results are shown in detail on the attached Figures IIC1 and IIC2. The 'normalized' rating in accordance with the ASTM standard was FIIC 13, and the rating based on the un-normalized data was FIIC 18.

It should be noted that the higher the IIC number, the lower the transmission and the higher the insulation. For reference, current American National Standards Institute (ANSI) guidelines for floor-ceiling assemblies between classrooms state that the floor-ceiling should be designed to a minimum acoustical performance of IIC 45 and preferably IIC 50.

Exhaust Fan Noise

Noise levels due to operation of the exhaust fans were measured in Classrooms 101, 102, 103 and 104. The exhaust fan in Classroom 105 was not operational at the time of our visit. The results of the measurements are shown on the attached Figures EF1 and EF2. For comparison, background noise levels were measured in two of the classrooms and the results are also shown on the figures.

Also shown on the figures are a series of noise criterion (NC) curves. Normally, we would recommend that background noise levels inside a university classroom due to HVAC system operation be limited to NC 30. Typical guidelines for HVAC noise in public high school classrooms are 40 dB(A) preferred, and 45 dB(A) maximum, which would correspond to approximately NC 30 and NC 35, respectively. Typically the dB(A) level is 5 to 10 numerically higher than the NC value, depending upon the overall sound level.

Upon examination of the data shown on Figures EF1 and EF2, it can be seen that noise levels in three of the four spaces that we measured were in the NC 55-60 range [61-67 dB(A)], and that noise in Classroom 104 exceeded NC 70 [75 dB(A)]. Clearly, these noise levels greatly exceed usual standards. It can also be seen that noise levels inside the classrooms with the exhaust fans off were NC 30 or lower [32-37 dB(A)].

Reverberation Measurements

Reverberation, the persistence of sound in a space resulting from repeated reflection of sound by surfaces enclosing the space, was measured using a precision sound analyzer and an amplifier/loudspeaker system. The reverberation time is defined as the time necessary for the sound level to decrease by 60 dB after the source is terminated.

Measurements were taken in Studios 101, 102, & 105, and the ground floor Gallery in the Design Center; and in Kirby Hall in the central open area and in Studio K102. The results of the measurements are summarized in the tables below.

American National Standards Institute (ANSI) recommendations for classroom acoustics suggest that for good listening conditions, reverberation times in the 500 Hz, 1000 Hz and 2000 Hz frequency bands be limited to 0.6 seconds in teaching spaces smaller than 10,000 cu.ft., and 0.7 seconds in larger spaces.
<table>
<thead>
<tr>
<th>Space</th>
<th>Octave Band Center Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500 Hz</td>
</tr>
<tr>
<td>Classroom 101</td>
<td>1.2</td>
</tr>
<tr>
<td>Classroom 102</td>
<td>1.2</td>
</tr>
<tr>
<td>Classroom 105</td>
<td>8</td>
</tr>
<tr>
<td>Design Gallery</td>
<td>1.3</td>
</tr>
<tr>
<td>Kirby Open Area</td>
<td>6</td>
</tr>
<tr>
<td>Kirby K102</td>
<td>7</td>
</tr>
</tbody>
</table>

Observations

We noted that demising walls in the Design Center classrooms extended to the structure above, however were not acoustically sealed at the partition head as shown in Photo 1. Pipe and conduit penetrations were not sealed. See Photo 2. The partition fronts for the computer lab and all classrooms included opaque plastic panels and dampers in the walls, which create a severe acoustical weakness. Walls between classrooms consisted of wood panels partially covered with gypsum board and mineral fiber panels. Batt insulation did occur in the stud cavity.

Entrance doors to the computer lab and classrooms did not include perimeter seals creating a gap at the floor, head and jamb of the doors.

From the detail received and our site observation, we understand that the floor assembly between the 1st Floor Classrooms and 2nd Floor Studios consist of 2” thick lightweight concrete over 1 1/8” structural sheathing panels supported by truss joists.

The finishes in the classrooms were acoustically hard and included an exposed wood ceiling and wood floors. Second floor studios included a concrete floor finish. As mentioned above a band of painted mineral fiber panels were included on the side walls of the classrooms, however similar products provide a minimal amount of sound absorption particularly when painted. With the exception of what appeared to be Tectum panels added to the ceiling of the Gallery and 2nd Floor studios no other acoustically absorptive treatment was installed in the Design Center building.

We noted that a suspended ceiling (Armstrong 769A), which has an acoustical performance of NRC 0.55 was installed in Classrooms K103 and 104 of Kirby Hall. Walls separating spaces stopped approximately 10’ above the floor and were finished with gypsum board and mineral fiber panels. Walls between the studios and presentation area did not include doors. The remaining ceiling and walls consisted of the building vinyl fabric. The floor was asphalt and concrete.

We would expect a lack of speech privacy between rooms that include construction similar to that observed and that footfall and chair scrape at upper levels to spaces beneath to be audible due to the hard 2nd Level floor finish.

After reviewing the exhaust fans in the Design Center building, we are unsure of the reason why the noise in Classroom 104 was so much higher than the noise in the other three spaces. The fan schedule shown on the construction drawings indicated that all six exhaust fans were to be the same model, operating at the same air volume and pressure conditions. The schedule indicates that the fans were to have been furnished with 2 speed motors and 2 stage thermostats. We noted that a two speed motor was installed on one of the two fans serving Classroom 101. However, the thermostats in all of the classrooms did not appear to be configured to allow two speed operation. The fans simply started and stopped in response to adjusting the temperature setting. It may be that the quieter fans are operating at low speed and the noisier fan may be operating at high speed. This could account for some of the differences in noise levels. The speed setting and thermostat configuration should be verified by the engineer.

Recommendations for Design Center
For reference, building Codes typically allow field test (NIC) ratings to be 5 points lower than the laboratory Sound Transmission Class (STC) test. Although not part of the standards, we have included NIC ratings as part of our recommendations to facilitate comparison with the sound test results discussed above. The American National Standards Institute (ANSI) guidelines for walls between classrooms indicate STC-50 and STC-45 at the corridor, NIC 45 and NIC 40 respectively. Entry doors to classrooms should have an acoustical performance of STC-30. Floor-ceiling construction between classrooms should be designed to a minimum acoustical performance of IIC 45. As noted above the sound isolation measured for the walls and floor-ceiling of the classrooms are well below the guidelines.

Sound Isolation

Our preferred construction between classrooms would be to incorporate a staggered stud configuration with a total of four layers of gypsum board and batt insulation in the stud cavity. This construction configuration typically achieves STC-50+ and provides a good level of sound isolation between rooms and reduces potential structure borne noise transfer via the partition. A similar composite as described above using a single stud similar to our enclosed detail P/4A could be used which has an approximate acoustical performance of STC-46 (NIC 41) based on the use of wood studs. This configuration typically achieves moderate sound isolation, however, structureborne noise transfer via the partition is more likely to occur.

As an alternate approach, the existing wall finishes inside of a given room could be removed (e.g. demising wall finishes in Classroom 102) in alternating classrooms to acid batt insulation and two layers of 5/8" thick gypsum board. See detail P/3A. Similar construction will have a lower acoustical performance than that discussed above (approximate acoustical performance of STC-44, NIC 39), however would provide a significant acoustical improvement compared to the current assembly and would minimize disturbance between classrooms. This construction should also be considered between Studios K101, K105 and adjacent classrooms and presentation area.

It should be noted that openings such as doors or windows are an inherent acoustical weakness. This is certainly the case for this project where translucent plastic panels, doors and dampers occur in the partition fronts of all the rooms in the Design Center. Ideally, the plastic panels and damper should be removed and patched with gypsum board each side. If such treatment can be incorporated, perimeter door seals as indicated on the attached detail DR/1 should be added to the entrance doors. If light transfer via the partition front is a project requirement ½" laminated glass should be installed. If the damper is required, we recommend that acoustical louvers be added to the dampers such as Type S manufactured by IAC. Please note that this louver is approximately 12" thick, and as such may be impractical for reasons other than acoustics. Acoustical louvers are available from several manufacturers ranging in thickness from 4" to 12". Space permitting, the acoustical louvers should have highest attenuation style, which frequency is a 12" thick unit. Please note that the exact type and size would need to be reviewed by a mechanical engineer due to the expected pressure drop.

All walls should be sealed at the partition head and base, include batt insulation and penetrations should be thoroughly sealed as shown for attached detail E/2.

As noted above, the ANSI guidelines for floor-ceiling assemblies between classrooms should be designed to a minimum acoustical performance of IIC 45 and preferably IIC 50. STC-50 is recommended to reduce airborne noise transfer. To reduce both impact noise and airborne sound transfer between the Design Center studio to the classroom below, the addition of resilient clips such as Pac International RSIC-1 and two layers of 5/8" thick gypsum board should be incorporated to the classroom ceilings. See catalog attached. Batt insulation should be added above the gypsum board. This construction will significantly change the look of the room particularly the ceiling height. Coordination with the existing exhaust duct opening, lights etc. will be required.

The less intrusive approach to reduce impact noise transfer from the 2nd Floor Studio to the classrooms below would be to add a resilient floor covering that indicates an IIC rating, similar to that manufactured by Noraplan Rubber Flooring or Forbo Industries (Marmoleum with a foam backing). Floor coverings with an IIC rating have a quantified performance and have been tested to reduce impact noise. We would
expect that in general the thicker and/or more "spongy" the resilient floor covering the better the results. Please note that such treatment will not address the airborne noise transfer.

Room Finishes
For Classrooms the major issue with respect to ‘room acoustics’ is that a sufficient quantity of acoustically absorbent finishes should be provided to limit reverberation within the rooms and maximize speech clarity and intelligibility. As noted above, currently all the finishes in the Design Center classrooms are hard. Typically, if the majority of the ceiling is treated with a material that has a minimum acoustical performance of NRC 0.70 the desired reverberation time can be achieved within the room. This would be the case for the Design Center classrooms. Tectum panels installed in the C-20 mounting (Tectum backed with 1" thick fiberglass) would be acoustically acceptable. If the resiliently suspended lid discussed above will be incorporated it would be acoustically acceptable to eliminate one of the layers of gypsum board for the Tectum/fiberglass panel.

Other acceptable ceiling treatments include cotton or fabric wrapped fiberglass panels along with a number of perforated or slat wood panels that would be acoustically acceptable when acoustically backed. If acoustical treatment cannot be added to the ceiling similar treatment close to or equal to the area of the ceiling should be added on the walls of each classroom. If tackable wall panels are desired, we recommend that panels with a rigid 1" thick fiberglass core (6PCF) and a 1/8" thick 10-12PCF high-density fiberglass face be used at these locations. Similar composites have an NRC of 0.85 and are tackable. See attached product catalog from Wall Technology.

Exhaust Fans
On the basis of the measured noise levels in these spaces, we do not believe that it will be practical to reduce the noise to meet the recommended noise criteria discussed above without substantial, and presumably costly, modifications to the fan systems. However, we believe that a worthwhile improvement, on the order of 18-22 dB(A), could be achieved by installation of duct silencers approximately located centered in the vertical ducts between the fan inlets and the duct penetrations through the studio walls. Subjectively, the resulting noise levels in the studios would be judged to be approximately one quarter as loud as the noise without the silencer.

Acoustically suitable silencers include IAC types CS and FCS. The outside diameter of the CS silencer is approximately 8" larger than the duct size, i.e., approximately 38" for a 30" silencer to match the existing ductwork, and the silencer would be approximately 60" long. The FCS silencer is approximately 16" larger than the duct, i.e., approximately 46" outside diameter, and is also approximately 60" long. Space permitting, especially at Classroom 104, we recommend that a type FCS silencer be used since it would provide approximately 5-6 dB higher attenuation than a type CS.

We recommend that a mechanical engineer confirm that installation of the silencers would not adversely affect the performance of those ventilation systems.

Recommendations for Kirby Hall
If it is required to maintain the existing volume of the space for aesthetic reasons, we recommend adding a barrier above the current wall separating the studio areas from the presentation space and classrooms. See Photo 5. The barrier should extend from the floor to the building structure above. A single layer of gypsum board each side with batt insulation in the stud cavity should be used and the partition should be thoroughly sealed the full perimeter.

Doors with perimeter acoustical seals should be added between the presentation area and studios.

We recommend the following options to reduce the reverberation time and improve speech intelligibility for Kirby Hall:

1. To improve sound isolation and speech intelligibility between studios i.e. K101,102 and K105 K106, which we understand to be the main concern, we recommend that an acoustical ceiling be suspended above Studios K101, K102, K105 and 106 similar to that currently installed in K103 and K104. The ceiling should have a minimum acoustical
performance of CAC 35 and NRC 0.70. Please note that the HVAC duct work would need to be modified accordingly. These modifications would need to address the issue of crosstalk. Sheet metal return air boots would need to be added above the ceiling grilles. See attached detail AC/5A. Although we expect some acoustical improvement with the added ceiling, we do not expect to achieve a level of sound isolation as good as that discussed above.

2. To reduce the reverberation time and improve speech intelligibility in the presentation area acoustically absorbent materials should be added to as much of the building ceiling and wall areas as possible. Ceiling treatment could include clouds or baffles as well as a standard suspended acoustical ceiling. If acoustical baffles or clouds are used, the total surface area of the treatment should at least equal to the floor area of the presentation space. Acoustical wall panels such as tackable panels discussed above should be added to the gypsum board walls. Both ceiling and wall panels should be specified to have a minimum acoustical performance of NRC 0.65. We recommend that the baffles have a minimum acoustical performance of NRC 1.0, which typically requires a porous covering over a fiberglass core.

Conclusion

Please note that the scope of this study is to provide conceptual acoustical recommendations only. It is intended that the information provided within this report should be adequate to facilitate preliminary pricing (by others).

The acoustical performance of a barrier is only as good as its weakest link. In the construction observed, the primary acoustical weakness between the Design Center classrooms and gallery were the openings in the wall. Between the classrooms the wall construction itself was the primary weakness. In Kirby Hall the main reason for poor speech privacy was the lack of structure to structure walls and doors.

In all areas, the lack of acoustically absorbent finishes contributed to noise build, reverberation and poor speech intelligibility.

To achieve some improvement, the openings in the partitions between the classrooms would need to be acoustically sealed along with the dampers. However, at this stage to achieve a marked improvement in acoustical sound isolation in addition to sealing the openings, walls and doors throughout would need to be modified and acoustically absorbent materials would need to be incorporated.

If the exhaust fans will be used as part of the ventilation system some sound attenuation will need to be added within the system.

We trust that this is adequate for your current needs. Please do not hesitate to contact us if there are any questions.

Yours Sincerely,

Newson Brown Acoustics, LLC

Dereck Hendrix
Director

Encl.

08-093
PROJ/woodbury university design center/rpt1
Photo 1 – partition does not extend to structure above.

Photo 2 – penetrations in demising walls not sealed.
Photo 3 – unsealed pipe penetration.

Photo 4 – unsealed pipe penetration.
Photo 5 – presentation area.
Woodbury University Design Center
Gallery to D201
18 July 2008

1/3 Oct Band Freq | 100 | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | 5000 | NIC
NR dB | 24 | 22 | 24 | 29 | 31 | 31 | 32 | 32 | 33 | 33 | 32 | 32 | 34 | 34 | 32 | 32 | 34 | 35 | **33**
Deficiencies | (1) | (2) | (4) | (5) | (3) | (3) | (5) | (5) | (3) | (31)
Woodbury University Design Center
Classroom 102 to Classroom 101
18 July 2008

1/3 Oct Band Freq | 100 | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | 5000 | NIC
NR dB | 20 | 16 | 15 | 20 | 22 | 21 | 20 | 19 | 18 | 20 | 24 | 27 | 30 | 30 | 32 | 32 | 31 | 33 | 25
Deficiencies | (4) | (6) | (8) | (7) | (4) | (2) | | | | | | | | | | | | | | (31)

Figure NIC2
Woodbury University Design Center
Classroom 102 to Classroom 103
18 July 2008

1/3 Oct Band Freq | 100 | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | 5000 | NIC
NR dB | 15 | 12 | 13 | 18 | 19 | 19 | 19 | 16 | 17 | 18 | 22 | 24 | 26 | 26 | 28 | 28 | 28 | 29 | 23
Deficiencies | (3) | (5) | (7) | (7) | (4) | (3) | (1) | (1) | (1) | (1) | (31)
Woodbury University Design Center
Classroom 103 to Second Floor Studio
30 July 2008

| Frequency (Hz) | 100 | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | 5000 | NIC |
|---------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|-----|
| Noise Reduction (dB) | 29 | 29 | 30 | 34 | 34 | 34 | 33 | 33 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | **37** |
| Deficiencies | | | | | | | | | | | | | | | | | | | (30) |

Figure NIC4
Woodbury University Design Center
Second Floor Studio to Classroom 103
30 July 2008

<table>
<thead>
<tr>
<th>1/3 Octave Band Freq</th>
<th>100</th>
<th>125</th>
<th>160</th>
<th>200</th>
<th>250</th>
<th>315</th>
<th>400</th>
<th>500</th>
<th>630</th>
<th>800</th>
<th>1000</th>
<th>1250</th>
<th>1600</th>
<th>2000</th>
<th>2500</th>
<th>3150</th>
<th>FIIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISPL dB</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>76</td>
<td>79</td>
<td>83</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>89</td>
<td>91</td>
<td>91</td>
<td>90</td>
<td>89</td>
<td>87</td>
<td>13</td>
</tr>
<tr>
<td>Excess</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Woodbury University Design Center
Second Floor Studio to Classroom 103
30 July 2008

Non-Normalized 1/3 Octave Band Sound Pressure Level - dB

Frequency - Hz

Field Impact Insulation Class - FIIC

1/3 Oct Band Freq 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 FIIC
ISPL dB 66 67 67 69 72 76 79 83 84 84 85 86 87 84 82 18
Excess 0 0 0 0 0 0 0 0 0 0 0 0 4 6 7 8 25

Figure IIC1
Woodbury University Design Center
Exhaust Fan Noise
18 July 2008

Figure EF1
NOTES:
1. ALL GYPSUM BOARD SHEETS TO RUN VERTICALLY.
2. TAPE OUTER JOINTS OF GYPSUM BOARD ONLY, INCLUDING JOINTS ABOVE THE CEILING LINE.
3. NO JOINTS EXCEPT AT STUDS.
4. STUD SIZES SHOWN ARE MINIMUM. LARGER SIZES MAY BE REQUIRED BASED ON HEIGHTS AND LOADING. TO MAXIMIZE ACOUSTICAL PERFORMANCE, STUD GA. SHOULD BE AS LIGHT AS POSSIBLE AND STUD SPACING SHOULD BE MAXIMIZED.
5. DRYWALL SCREW EDGE AND FIELD SPACING PER GYPSUM BOARD MANUFACTURER’S RECOMMENDATIONS. ALL SCREWS SHALL PENETRATE STUDS.
6. FIBERGLASS BATT INSTALLATION SHALL BE Owens-Corning FIBERGLASS NOISE BARRIER BATTs, OCC FRICITION FIT BUILDING INSULATION OR APPROVED EQUAL.
7. STAGGER JOINTS OF GYPSUM BOARD WHERE MULTIPLE LAYERS OCCUR.
8. DO NOT GLUE MULTIPLE LAYERS OF GYPSUM BOARD TOGETHER.
9. LINEAR AIR SLOTS OR WINDOW SHADE POCKETS SHOULD NOT PENETRATE SLAB-TO-SLAB PARTITIONS IN ACOUSTICALLY SENSITIVE AREAS.

PARTITION DETAIL—TYPE P/4A
NOTES:
1. ALL GYPSUM BOARD SHEETS TO RUN VERTICALLY.
2. TAPE OUTER JOINTS OF GYPSUM BOARD ONLY, INCLUDING JOINTS ABOVE THE CEILING LINE.
3. NO JOINTS EXCEPT AT STUDS.
4. STUD SIZES SHOWN ARE MINIMUM. LARGER SIZES MAY BE REQUIRED BASED ON HEIGHTS AND LOADING. TO MAXIMIZE ACOUSTICAL PERFORMANCE, STUD GA. SHOULD BE AS LIGHT AS POSSIBLE AND STUD SPACING SHOULD BE MAXIMIZED.
5. DRYWALL SCREW EDGE AND FIELD SPACING PER GYPSUM BOARD MANUFACTURER'S RECOMMENDATIONS. ALL SCREWS SHALL PENEatrATE STUDS.
6. FIBERGLASS BATT INSTALLATION SHALL BE Owens-Corning FIBERGLASS NOISE BARRIER BATS, CCF FRICTION FIT BUILDING INSULATION OR APPROVED EQUAL. FIBERGLASS THICKNESS TO EQUAL STUD DEPTH.
7. STAGGER JOINTS OF GYPSUM BOARD WHERE MULTIPLE LAYERS OCCUR.
8. DO NOT GLUE MULTIPLE LAYERS OF GYPSUM BOARD TOGETHER.
9. LINEAR AIR SLOTS OR WINDOW SHADE PKETS SHOULD NOT PENEatrATE SLAB-TO-SLAB PARTITIONS IN ACOUSTICALLY SENSITIVE AREAS.

PARTITION DETAIL—TYPE P/3A
2 SELF ADHESIVE SILICONE OR NEOPRENE SEALS SHOWN IN A NON-COMPRESSED POSITION.

ASTRAGAL SEAL

STRIKE JAMB

HINGE JAMB (HEAD SIMILAR)

FOAM SEAL

SOLID CORE WOOD DOOR (TYP.)

SOLID CORE WOOD DOOR (TYP.)

SURFACE APPLIED DOOR BOTTOM (ALTERNATE)

1/4" MAX.

SMOOTH WOOD, STONE OR METAL THRESHOLD (SEE DR/2 FOR NOTES)

AUTOMATIC DOOR BOTTOM

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>PERIMETER</th>
<th>*ASTRAGAL</th>
<th>AUTOMATIC DOOR BOTTOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATIONAL GUARD</td>
<td>5050</td>
<td>109N</td>
<td>423N 420N</td>
</tr>
<tr>
<td>PEMKO</td>
<td>S 88</td>
<td>355CS</td>
<td>434A/420A</td>
</tr>
<tr>
<td>REESE</td>
<td>797</td>
<td></td>
<td>371 521</td>
</tr>
<tr>
<td>ULTRA</td>
<td></td>
<td></td>
<td>DB 043 369 387</td>
</tr>
<tr>
<td>ZERO</td>
<td>1840</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* NO ACOUSTICAL TESTING DATA FROM MANUFACTURER
* ALTERNATE FOR HOLLOW METAL DOORS

NOTES:
1. INSTALL DOOR IN FRAME WITH 1/8" MAX. TOLERANCE HEAD, HINGE & STRIKE JAMB.
2. PERIMETER SEAL SHALL ALWAYS BE MIN. SEMI COMPRESSED WITH DOOR CLOSED.
3. IF TOLERANCE OF PERIMETER IS GREATER THAN 1/8" & DOOR CANNOT BE ADJUSTED, REPLACE WITH 1/2" SEAL INSTEAD OF 1/4" SEAL.
4. ALL GAPS AT INTERSECTION OF ASTRAGAL & AUTOMATIC DOOR BOTTOM SHALL BE SEALED.
5. FOR DOUBLE INTERCONNECTING DOORS PROVIDE PERIMETER SEALS AND AUTOMATIC DOOR BOTTOMS ON BOTH DOORS.
6. IF REQUIRED, SUBSTITUTE A SURFACE APPLIED AUTOMATIC DOOR BOTTOM WITH REESE 521 OR EQUAL.

DOOR SEAL DETAILS

NEWSON BROWN ACoustics LLC
1/8" CLEAR TYP.
(CONDUIT OR PIPE SHALL NOT CONTACT WALL)

ACOUSTICAL SEALANT

SIMILAR FOR DOUBLE STUD PARTITION

SINGLE CONDUIT, CABLE OR PIPE

CAULKING COMPOUND, CLOSED CELL POLYURETHANE FOAM OR FIRE RATED SILICONE FOAM

1/2" CLEAR (TYP.)

SIMILAR FOR SINGLE STUD PARTITION

MULTIPLE CONDUIT

CONDUIT SLEEVE

CAULKING COMPOUND, CLOSED CELL POLYURETHANE FOAM OR FIRE RATED SILICONE FOAM

1/8" CLEAR TYP.
(CONDUIT OR PIPE SHALL NOT CONTACT WALL)

SLEEVE W/MULTIPLE CABLES

Penetrations of acoustical partitions by, conduit, cable, pipes etc. shall be acoustically sealed as shown. Any gap larger than 1/2" shall be covered with gypsum board, lapped a minimum of 2" and screwed before using acoustical sealant. Cable trays should not penetrate slab-to-slab partitions. A conduit sleeve should be used at such penetrations and sealed as shown on this detail.

Flexible duct, pipe, conduit, etc. connections should be incorporated between rooms where resiliently isolated floors, walls or ceiling lids occur.

PARTITION PénéTRATION DETAILS
RSIC PRODUCT GUIDE
THE RSIC SOUND ISOLATION CLIPS

RSIC-1
RSIC-1 Retro
RSIC-2
RSIC-2 Retro

RSIC-1.5 CRC
RSIC-1 TTC
RSIC-1 ADM
Garage Door Silencer Kit

RSIC-CWB
RSIC-HW1 & RSIC-HW1X2

RSIC-DC04 & RSIC-DC04 Retro
RSIC-DC04X2
RSIC-1 EXT04

RSIC
YOUR LOW COST
HIGH PERFORMANCE
NOISE CONTROL
SOLUTION

PAC International, Inc. Tel: (866) 774-2100 Fax: (866) 649-2710 Web Site: www.pac-intl.com
- Topping (Gypcrete, tile, hardwood, or carpet
- 3/4" plywood sheathing
- Glues & screwed
- Open web truss
- Blown in insulation (full depth of cavity)
- RSIC-1 clips at 16" x 48" O.C.
- 7/8" drywall furring channel at 16" O.C.
- 2 layers 5/8" gypsum board
- RSIC-DC04X2 sound isolation clips @ 48" x 48" O.C. (or as needed to support the gypsum board for the soffit)
- 1-1/2" 16GA. cold rolled channel
- 7/8" drywall furring channel tied to the bottom of the 1-1/2" 16GA. cold rolled channel
- 1 layer of 5/8" gypsum board.
Wall Technology's IR108 Series panel is a composite panel designed for use in areas susceptible to damage such as high traffic office areas, school rooms and public buildings. Its construction allows for abuse resistance and noise control as well as a high loadability and a smooth surface. Because of its smooth surface, almost any type of fabric can be applied to the panel from lightweight焼布 to heavy designer fabrics. This panel series also offers extra-wide panels as standard products — up to 60" wide.

Typical Core Section

![Typical Core Section Diagram]

Acoustical Performance

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>NRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR108</td>
<td>11"x12" A 125 500 1000 2000 4000 93</td>
<td></td>
</tr>
<tr>
<td>Fabric</td>
<td>14 25 61 1.02 1.97 90</td>
<td></td>
</tr>
<tr>
<td>IR208</td>
<td>21/2" 125 500 1000 2000 4000 95</td>
<td></td>
</tr>
<tr>
<td>Fabric</td>
<td>48 .99 1.16 1.08 .96 .90 1.28</td>
<td></td>
</tr>
</tbody>
</table>

*For ASTM E-413 (Type 'A' Warrant) Modified 'A' Warrant, spaced 1/4" of test face, will slightly increase NRC. Consult Manufacturer for information on other thicknesses and configurations.
SPECIFICATIONS FOR IR108 SERIES PANELS

PART 1 GENERAL

1.1 Work in this section shall be subject to drawings, general conditions, schedules, addenda and other contract documents.

1.2 The extent of the acoustical panels is shown on the drawings and in the schedules.

1.3 Sound: (select quantity) samples of each type of acoustical panel as shown on the drawings and in schedules and include appropriate test data and maintenance instructions. Submit (select quantity) fabric samples from manufacturer's standard finishes, or designer specified finishes.

1.4 Acoustical panels shall be installed according to manufacturer's recommendations and instructions.

1.5 Installation of acoustical panels shall not begin until all wet work (plastering, concrete, etc.) is completed and dry. Building shall be properly sealed and under standard occupancy conditions (temperature of 60-85 degrees F and not more than 70% relative humidity) before installation begins.

1.6 The contractor shall be responsible for the examination and acceptance of all surfaces and conditions prior to the acoustical panel installation.

1.7 Substitutions or changes will only be permitted by prior approval by the architect.

PART 2 MATERIALS

2.1 Acoustical wall panels shall be Wall Technology, Inc. Type: IR108 Series Acoustical Wall Panels as manufactured by Wall Technology, Inc./ 2750 Industrial Lane / Broomfield, CO 80020. Phone: (303) 466-3700 / Fax: (303) 466-4002.

2.2 Acoustical Panels shall be constructed of a composite core construction of dimensionally stable rigid fiberglass of medium density laminated with a 3/8" thick, 16-20 PCF high density smooth sanded fiberglass face. Thickness (choose one): 5/8" 7/8" 1 1/8" 1 5/8" 2 1/8" 3 1/8" 4 1/8" or custom.

2.3 Sizes: _________ width and _________ high or as shown on drawings. Standard maximum size is 60" wide x 120" high (nominal). Custom or larger sizes available; consult manufacturer. Panels are to be manufactured according to field dimensions supplied by the installing contractor. Standard tolerances are ± 1/4" in width and length.

2.4 Edge profile shall be: Square, radius, bevel, miter, kerf, or custom _______ (specify). Corner detail shall be: Square, radius or custom _______ (specify). Edge treatment shall be: resin hardened, aluminum (with square edge only), wood (all profiles available) or custom _______ (specify).

2.5 Panel finish shall be _______ (specify finish manufacturer, pattern and color). Finish shall be applied directly over the face and edges of the panel and returned to the back of the panel to provide a full finished edge. All corners are fully tailed.

2.6 Mounting shall be: adhesive, mechanical clip, impaling clip, velcro, magnetic, concealed spline, or custom _______ (please specify). Adhesive, fasteners, (i.e., nails, screws, etc.) and standard continuous wall leveling angle are to be supplied by the contractor. All other mountings are supplied by the manufacturer unless otherwise noted.

2.7 Acoustical Performance - panels shall have a minimum NRC of ______ (please specify) in accordance with ASTM C-423 (Type "A" Mounting).

2.8 Flammability - All panel components shall have a Class “A” flame spread rating of 25 or less in accordance with ASTM E-84.

Thank you for choosing Wall Technology, Inc. for your acoustical needs.
March 17, 2008

Ms. Carolee Toon
Professor
Design Foundation Coordinator
Woodbury University
7500 Glenoaks Blvd.
Burbank, CA 91510

RE: Engineering Services - Consultation
HVAC for Design Center

Dear Ms. Toon,

Thanks for your time and thanks for your interest in Pacific Coast Process Solutions. I am very interested in working with you on the project you described in your e-mails and on the phone the past few weeks. I received the information to access your drawings online last week and performed a cursory review of the Architectural, Mechanical, and Electrical drawings.

Problem Identified

Here is your situation as I understand it. Your existing Design Center building was originally built as a gymnasium. It was converted to studios and classroom space for three design programs. The three top issues that your instructors, students, and staff are experiencing are that the space is hot in the summer, cold in the winter, and there is excessive noise from the exhaust fans. There is also a maintenance and operations issue in that your existing maintenance staff must turn heaters on and off manually in the winter.

Solution Offered

The solution we would like to offer is in two phases – evaluating your existing systems and developing potential solutions.
Evaluation of Existing Systems

You would like an evaluation of your existing Heating, Ventilation, and Air Conditioning systems. This would require between 8 to 16 hours. This phase will include the following tasks:

- Site Inspection
- Record nameplate data on existing equipment
- Verify data from drawings
- Interview students, instructors, and staff
- Research specifications of installed equipment
- Review design criteria, compare to equipment installed

Developing Potential Solutions

Once we understand how your existing system was designed and installed, and we fully understand the existing operational deficiencies from both a technical and a human perspective, we can begin to develop potential solutions to your existing situation. This would require between 12-28 hours. This phase will include the following tasks:

- Estimate external load for cooling and heating modes (building envelope)
- Estimate internal load for cooling and heating modes (people, equipment, and lighting)
- Estimate existing capacity for cooling and heating modes
- Calculate gap between required loads and existing loads
- Develop 2-5 potential equipment and automation solutions
- Identify 2-4 potential contractors to install and service these systems
- Develop specifications for a service contract to assure the proper environment is delivered for students and faculty while not overtaxing the maintenance staff
- Create a preliminary scope of work, budget and timeline for each of the potential solutions

The rate for engineering services for the Evaluation phase and the Developing Solutions phase is $150.00 per hour. Our terms are net 30 days. Depending on your internal time requirements, we could start the evaluation phase within 2-3 weeks.
If you have any questions regarding this proposal, please call me at 562-253-2112. We have performed numerous evaluations similar to this for a variety of clients and we strongly believe we can help you solve your challenges in this building as well. We look forward to working with you.

Sincerely,

PACIFIC COAST PROCESS SOLUTIONS, Inc.

George White, P.E.
Consulting Engineer

Accepted: ____________________________ Accepted: ____________________________
Carolee Toon George White, P.E.

Date: ________________________________ Date: ________________________________